--- tags: - braindecode - eeg - neuroscience - brain-computer-interface license: unknown --- # EEG Dataset This dataset was created using [braindecode](https://braindecode.org), a library for deep learning with EEG/MEG/ECoG signals. ## Dataset Information - **Number of recordings**: 1 - **Number of channels**: 26 - **Sampling frequency**: 250.0 Hz - **Data type**: Continuous (Raw) - **Number of windows**: 96735 - **Total size**: 19.23 MB - **Storage format**: zarr ## Usage To load this dataset: ```python from braindecode.datasets import BaseConcatDataset # Load dataset from Hugging Face Hub dataset = BaseConcatDataset.from_pretrained("username/dataset-name") # Access data X, y, metainfo = dataset[0] # X: EEG data (n_channels, n_times) # y: label/target # metainfo: window indices ``` ## Using with PyTorch DataLoader ```python from torch.utils.data import DataLoader # Create DataLoader for training train_loader = DataLoader( dataset, batch_size=32, shuffle=True, num_workers=4 ) # Training loop for X, y, _ in train_loader: # X shape: [batch_size, n_channels, n_times] # y shape: [batch_size] # Process your batch... ``` ## Dataset Format This dataset is stored in **Zarr** format, optimized for: - Fast random access during training (critical for PyTorch DataLoader) - Efficient compression with blosc - Cloud-native storage compatibility For more information about braindecode, visit: https://braindecode.org