Update README.md
Browse files
README.md
CHANGED
|
@@ -1,163 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"overview": {
|
| 3 |
-
"where": {
|
| 4 |
-
"has-leaderboard": "no",
|
| 5 |
-
"leaderboard-url": "N/A",
|
| 6 |
-
"leaderboard-description": "N/A",
|
| 7 |
-
"website": "http://abductivecommonsense.xyz/",
|
| 8 |
-
"data-url": "https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip",
|
| 9 |
-
"paper-url": "https://openreview.net/pdf?id=Byg1v1HKDB",
|
| 10 |
-
"paper-bibtext": "@inproceedings{\nBhagavatula2020Abductive,\ntitle={Abductive Commonsense Reasoning},\nauthor={Chandra Bhagavatula and Ronan Le Bras and Chaitanya Malaviya and Keisuke Sakaguchi and Ari Holtzman and Hannah Rashkin and Doug Downey and Wen-tau Yih and Yejin Choi},\nbooktitle={International Conference on Learning Representations},\nyear={2020},\nurl={https://openreview.net/forum?id=Byg1v1HKDB}\n}",
|
| 11 |
-
"contact-name": "Chandra Bhagavatulla",
|
| 12 |
-
"contact-email": "[email protected]"
|
| 13 |
-
},
|
| 14 |
-
"languages": {
|
| 15 |
-
"is-multilingual": "no",
|
| 16 |
-
"license": "apache-2.0: Apache License 2.0",
|
| 17 |
-
"task-other": "N/A",
|
| 18 |
-
"language-names": [
|
| 19 |
-
"English"
|
| 20 |
-
],
|
| 21 |
-
"language-speakers": "Crowdworkers on the Amazon Mechanical Turk platform based in the U.S, Canada, U.K and Australia. ",
|
| 22 |
-
"intended-use": "To study the viability of language-based abductive reasoning. Training and evaluating models to generate a plausible hypothesis to explain two given observations.",
|
| 23 |
-
"license-other": "N/A",
|
| 24 |
-
"task": "Reasoning"
|
| 25 |
-
},
|
| 26 |
-
"credit": {
|
| 27 |
-
"organization-type": [
|
| 28 |
-
"industry"
|
| 29 |
-
],
|
| 30 |
-
"organization-names": "Allen Institute for AI",
|
| 31 |
-
"creators": "Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi (AI2, UW)",
|
| 32 |
-
"funding": "Allen Institute for AI",
|
| 33 |
-
"gem-added-by": "Chandra Bhagavatula (AI2), Ronan LeBras (AI2), Aman Madaan (CMU), Nico Daheim (RWTH Aachen University)"
|
| 34 |
-
},
|
| 35 |
-
"structure": {
|
| 36 |
-
"data-fields": "- observation_1: A string describing an observation / event.\n- observation_2: A string describing an observation / event.\n- label: A string that plausibly explains why observation_1 and observation_2 might have happened.",
|
| 37 |
-
"structure-labels": "Explanations were authored by crowdworkers on the Amazon Mechanical Turk platform using a custom template designed by the creators of the dataset.",
|
| 38 |
-
"structure-example": "{\n'gem_id': 'GEM-ART-validation-0',\n'observation_1': 'Stephen was at a party.',\n'observation_2': 'He checked it but it was completely broken.',\n'label': 'Stephen knocked over a vase while drunk.'\n}",
|
| 39 |
-
"structure-splits": "- train: Consists of training instances. \n- dev: Consists of dev instances.\n- test: Consists of test instances.\n"
|
| 40 |
-
}
|
| 41 |
-
},
|
| 42 |
-
"gem": {
|
| 43 |
-
"rationale": {
|
| 44 |
-
"contribution": "Abductive reasoning is a crucial capability of humans and ART is the first dataset curated to study language-based abductive reasoning.",
|
| 45 |
-
"sole-task-dataset": "no",
|
| 46 |
-
"distinction-description": "N/A",
|
| 47 |
-
"model-ability": "Whether models can reason abductively about a given pair of observations."
|
| 48 |
-
},
|
| 49 |
-
"curation": {
|
| 50 |
-
"has-additional-curation": "no",
|
| 51 |
-
"modification-types": [],
|
| 52 |
-
"modification-description": "N/A",
|
| 53 |
-
"has-additional-splits": "no",
|
| 54 |
-
"additional-splits-description": "N/A",
|
| 55 |
-
"additional-splits-capacicites": "N/A"
|
| 56 |
-
},
|
| 57 |
-
"starting": {
|
| 58 |
-
"research-pointers": "- Paper: https://arxiv.org/abs/1908.05739\n- Code: https://github.com/allenai/abductive-commonsense-reasoning"
|
| 59 |
-
}
|
| 60 |
-
},
|
| 61 |
-
"results": {
|
| 62 |
-
"results": {
|
| 63 |
-
"model-abilities": "Whether models can reason abductively about a given pair of observations.",
|
| 64 |
-
"metrics": [
|
| 65 |
-
"BLEU",
|
| 66 |
-
"BERT-Score",
|
| 67 |
-
"ROUGE"
|
| 68 |
-
],
|
| 69 |
-
"other-metrics-definitions": "N/A",
|
| 70 |
-
"has-previous-results": "no",
|
| 71 |
-
"current-evaluation": "N/A",
|
| 72 |
-
"previous-results": "N/A"
|
| 73 |
-
}
|
| 74 |
-
},
|
| 75 |
-
"curation": {
|
| 76 |
-
"original": {
|
| 77 |
-
"is-aggregated": "no",
|
| 78 |
-
"aggregated-sources": "N/A"
|
| 79 |
-
},
|
| 80 |
-
"language": {
|
| 81 |
-
"obtained": [
|
| 82 |
-
"Crowdsourced"
|
| 83 |
-
],
|
| 84 |
-
"found": [],
|
| 85 |
-
"crowdsourced": [
|
| 86 |
-
"Amazon Mechanical Turk"
|
| 87 |
-
],
|
| 88 |
-
"created": "N/A",
|
| 89 |
-
"machine-generated": "N/A",
|
| 90 |
-
"producers-description": "Language producers were English speakers in U.S., Canada, U.K and Australia.",
|
| 91 |
-
"topics": "No",
|
| 92 |
-
"validated": "validated by crowdworker",
|
| 93 |
-
"pre-processed": "N/A",
|
| 94 |
-
"is-filtered": "algorithmically",
|
| 95 |
-
"filtered-criteria": "Adversarial filtering algorithm as described in the paper: https://arxiv.org/abs/1908.05739"
|
| 96 |
-
},
|
| 97 |
-
"annotations": {
|
| 98 |
-
"origin": "automatically created",
|
| 99 |
-
"rater-number": "N/A",
|
| 100 |
-
"rater-qualifications": "N/A",
|
| 101 |
-
"rater-training-num": "N/A",
|
| 102 |
-
"rater-test-num": "N/A",
|
| 103 |
-
"rater-annotation-service-bool": "no",
|
| 104 |
-
"rater-annotation-service": [],
|
| 105 |
-
"values": "Each observation is associated with a list of COMET (https://arxiv.org/abs/1906.05317) inferences.",
|
| 106 |
-
"quality-control": "none",
|
| 107 |
-
"quality-control-details": "N/A"
|
| 108 |
-
},
|
| 109 |
-
"consent": {
|
| 110 |
-
"has-consent": "no",
|
| 111 |
-
"consent-policy": "N/A",
|
| 112 |
-
"consent-other": "N/A"
|
| 113 |
-
},
|
| 114 |
-
"pii": {
|
| 115 |
-
"has-pii": "no PII",
|
| 116 |
-
"no-pii-justification": "The dataset contains day-to-day events. It does not contain names, emails, addresses etc. ",
|
| 117 |
-
"pii-categories": [],
|
| 118 |
-
"is-pii-identified": "N/A",
|
| 119 |
-
"pii-identified-method": "N/A",
|
| 120 |
-
"is-pii-replaced": "N/A",
|
| 121 |
-
"pii-replaced-method": "N/A"
|
| 122 |
-
},
|
| 123 |
-
"maintenance": {
|
| 124 |
-
"has-maintenance": "no",
|
| 125 |
-
"description": "N/A",
|
| 126 |
-
"contact": "N/A",
|
| 127 |
-
"contestation-mechanism": "N/A",
|
| 128 |
-
"contestation-link": "N/A",
|
| 129 |
-
"contestation-description": "N/A"
|
| 130 |
-
}
|
| 131 |
-
},
|
| 132 |
-
"context": {
|
| 133 |
-
"previous": {
|
| 134 |
-
"is-deployed": "no",
|
| 135 |
-
"described-risks": "N/A",
|
| 136 |
-
"changes-from-observation": "N/A"
|
| 137 |
-
},
|
| 138 |
-
"underserved": {
|
| 139 |
-
"helps-underserved": "no",
|
| 140 |
-
"underserved-description": "N/A"
|
| 141 |
-
},
|
| 142 |
-
"biases": {
|
| 143 |
-
"has-biases": "no",
|
| 144 |
-
"bias-analyses": "N/A"
|
| 145 |
-
}
|
| 146 |
-
},
|
| 147 |
-
"considerations": {
|
| 148 |
-
"pii": {
|
| 149 |
-
"risks-description": "None"
|
| 150 |
-
},
|
| 151 |
-
"licenses": {
|
| 152 |
-
"dataset-restrictions": [
|
| 153 |
-
"public domain"
|
| 154 |
-
],
|
| 155 |
-
"dataset-restrictions-other": "N/A",
|
| 156 |
-
"data-copyright": [
|
| 157 |
-
"public domain"
|
| 158 |
-
],
|
| 159 |
-
"data-copyright-other": "N/A"
|
| 160 |
-
},
|
| 161 |
-
"limitations": {}
|
| 162 |
-
}
|
| 163 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|