diff --git "a/huggingface_dataset/dataset_cards_with_paper_refs.csv" "b/huggingface_dataset/dataset_cards_with_paper_refs.csv" new file mode 100644--- /dev/null +++ "b/huggingface_dataset/dataset_cards_with_paper_refs.csv" @@ -0,0 +1,2355 @@ +dataset_name,author,paper_refs +super_glue,huggingface,[{'title': 'BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions'}] +glue,huggingface,[{'title': 'Neural Network Acceptability Judgments'}] +bigscience/P3,bigscience,['arxiv.org/abs/2110.08207'] +hendrycks_test,huggingface,"['arxiv.org/abs/2009.03300', {'title': 'Measuring Massive Multitask Language Understanding'}]" +wikitext,huggingface,['arxiv.org/abs/1609.07843'] +blimp,huggingface,[{'title': 'BLiMP: A Benchmark of Linguistic Minimal Pairs for English'}] +squad,huggingface,['bibtex'] +wino_bias,huggingface,"['arxiv.org/abs/1804.06876', 'bibtex']" +red_caps,huggingface,['arxiv.org/abs/2111.11431'] +allenai/nllb,allenai,['arxiv.org/abs/2205.12654'] +trec,huggingface,['bibtex'] +adversarial_qa,huggingface,"['arxiv.org/abs/2002.00293', 'doi.org/10.1162/tacl_a_00338', 'bibtex']" +anli,huggingface,['arxiv.org/abs/1910.14599'] +cnn_dailymail,huggingface,['bibtex'] +duorc,huggingface,"['arxiv.org/abs/1804.07927', 'bibtex']" +Helsinki-NLP/tatoeba_mt,Helsinki-NLP,['bibtex'] +xsum,huggingface,"['arxiv.org/abs/1808.08745', {'title': ""Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization""}]" +Anthropic/hh-rlhf,Anthropic,['arxiv.org/abs/2204.05862'] +sst2,huggingface,['bibtex'] +paws,huggingface,['arxiv.org/abs/1904.01130'] +race,huggingface,"['arxiv.org/abs/1704.04683', 'bibtex']" +kilt_tasks,huggingface,"['arxiv.org/abs/2009.02252', 'bibtex']" +ag_news,huggingface,[{'title': 'Character-level Convolutional Networks for Text Classification'}] +cos_e,huggingface,"['arxiv.org/abs/1906.02361', 'bibtex']" +ai2_arc,huggingface,['bibtex'] +cosmos_qa,huggingface,"['arxiv.org/abs/1909.00277', 'bibtex']" +quail,huggingface,"['doi.org/10.1609/aaai.v34i05.6398', 'bibtex']" +wikiann,huggingface,"['arxiv.org/abs/1902.00193', 'bibtex']" +amazon_polarity,huggingface,['arxiv.org/abs/1509.01626'] +trivia_qa,huggingface,"['arxiv.org/abs/1705.03551', 'bibtex']" +piqa,huggingface,"['arxiv.org/abs/1911.11641', 'bibtex']" +yelp_review_full,huggingface,['arxiv.org/abs/1509.01626'] +ropes,huggingface,"['arxiv.org/abs/1908.05852', {'title': 'Reasoning Over Paragraph Effects in Situations'}]" +wikisql,huggingface,"['arxiv.org/abs/1709.00103', 'bibtex']" +wiki_qa,huggingface,['bibtex'] +wiki_hop,huggingface,['arxiv.org/abs/1710.06481'] +quoref,huggingface,['bibtex'] +common_gen,huggingface,"['arxiv.org/abs/1911.03705', 'bibtex']" +squad_v2,huggingface,['bibtex'] +tweet_eval,huggingface,[{'title': '{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification'}] +samsum,huggingface,"['arxiv.org/abs/1911.12237', 'bibtex']" +gigaword,huggingface,"['arxiv.org/abs/1509.00685', 'doi.org/10.18653/v1/D15-1044},', {'title': 'English gigaword'}]" +sciq,huggingface,[{'title': 'Crowdsourcing Multiple Choice Science Questions'}] +hellaswag,huggingface,[{'title': 'HellaSwag: Can a Machine Really Finish Your Sentence?'}] +conll2003,huggingface,['bibtex'] +qasc,huggingface,"['arxiv.org/abs/1910.11473', 'bibtex']" +wiqa,huggingface,['bibtex'] +oscar,huggingface,"['arxiv.org/abs/2010.14571', 'bibtex']" +facebook/flores,facebook,"['arxiv.org/abs/2207.04672', 'bibtex']" +openai/webgpt_comparisons,openai,"['arxiv.org/abs/2112.09332', 'bibtex']" +GEM/wiki_lingua,GEM,['bibtex'] +wiki_bio,huggingface,"['arxiv.org/abs/1603.07771', 'bibtex']" +xtreme,huggingface,['bibtex'] +bigbench,huggingface,"['arxiv.org/abs/2206.04615', 'doi.org/10.48550/arxiv.2206.04615,']" +mozilla-foundation/common_voice_11_0,mozilla-foundation,"['arxiv.org/abs/1912.06670', 'bibtex']" +lex_glue,huggingface,"['arxiv.org/abs/2110.00976', {'title': 'LexGLUE: A Benchmark Dataset for Legal Language Understanding in English'}]" +c4,huggingface,"['arxiv.org/abs/1910.10683', 'bibtex']" +mc4,huggingface,"['arxiv.org/abs/1910.10683', 'bibtex']" +openbookqa,huggingface,[{'title': 'Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering'}] +csebuetnlp/xlsum,csebuetnlp,"['arxiv.org/abs/1607.01759', 'bibtex']" +quarel,huggingface,[{'title': 'QuaRel: A Dataset and Models for Answering Questions about Qualitative Relationships'}] +clips/mqa,clips,['bibtex'] +code_x_glue_ct_code_to_text,huggingface,[{'title': 'Codesearchnet challenge: Evaluating the state of semantic code search'}] +bookcorpus,huggingface,['arxiv.org/abs/2105.05241'] +math_dataset,huggingface,['bibtex'] +story_cloze,huggingface,[{'title': 'Lsdsem 2017 shared task: The story cloze test'}] +web_questions,huggingface,['bibtex'] +gsm8k,huggingface,"['arxiv.org/abs/2110.14168', {'title': 'Training Verifiers to Solve Math Word Problems'}]" +openai_humaneval,huggingface,['arxiv.org/abs/2107.03374'] +amazon_reviews_multi,huggingface,"['arxiv.org/abs/2010.02573', {'title': 'The Multilingual Amazon Reviews Corpus'}]" +common_voice,huggingface,['bibtex'] +ought/raft,ought,['arxiv.org/abs/2109.14076'] +klue,huggingface,['arxiv.org/abs/2105.09680'] +sick,huggingface,['bibtex'] +snli,huggingface,['bibtex'] +gsarti/flores_101,gsarti,"['arxiv.org/abs/2106.03193', {'title': 'The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation'}]" +reddit,huggingface,['bibtex'] +the_pile,huggingface,['arxiv.org/abs/2101.00027'] +opus100,huggingface,['arxiv.org/abs/2004.11867'] +financial_phrasebank,huggingface,[{'title': 'Good debt or bad debt: Detecting semantic orientations in economic texts'}] +textvqa,huggingface,"['arxiv.org/abs/1904.08920', {'title': 'Towards VQA Models That Can Read'}]" +mnist,huggingface,[{'title': 'MNIST handwritten digit database'}] +fashion_mnist,huggingface,"['arxiv.org/abs/1708.07747', 'bibtex']" +newsgroup,huggingface,['doi.org/10.1016/B978-1-55860-377-6.50048-7)'] +mbpp,huggingface,"['arxiv.org/abs/2108.07732', {'title': 'Program Synthesis with Large Language Models'}]" +stsb_multi_mt,huggingface,['arxiv.org/abs/1708.00055'] +eli5,huggingface,"['arxiv.org/abs/1907.09190', 'doi.org/10.18653/v1/p19-1346},', 'bibtex']" +tydiqa,huggingface,[{'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}] +ptb_text_only,huggingface,['bibtex'] +ccdv/cnn_dailymail,ccdv,['bibtex'] +EleutherAI/lambada_openai,EleutherAI,[{'title': 'Language Models are Unsupervised Multitask Learners'}] +tau/scrolls,tau,['bibtex'] +squad_kor_v1,huggingface,"['arxiv.org/abs/1909.07005', {'title': 'Korquad1. 0: Korean qa dataset for machine reading comprehension'}]" +tasksource/bigbench,tasksource,[{'title': 'Beyond the imitation game: Quantifying and extrapolating the capabilities of language models'}] +scan,huggingface,['bibtex'] +gem,huggingface,"['arxiv.org/abs/2102.01672', 'bibtex']" +guardian_authorship,huggingface,['bibtex'] +swag,huggingface,"['arxiv.org/abs/1808.05326', {'title': 'SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference'}]" +poloclub/diffusiondb,poloclub,"['arxiv.org/abs/2210.14896', {'title': '{{DiffusionDB'}]" +turkic_xwmt,huggingface,"['arxiv.org/abs/2109.04593', {'title': 'A Large-Scale Study of Machine Translation in Turkic Languages'}]" +xquad,huggingface,['bibtex'] +OATML-Markslab/ProteinGym,OATML-Markslab,['arxiv.org/abs/2205.13760'] +librispeech_asr,huggingface,[{'title': 'Librispeech: an ASR corpus based on public domain audio books'}] +subjqa,huggingface,"['arxiv.org/abs/2004.14283', 'bibtex']" +multi_eurlex,huggingface,['arxiv.org/abs/2109.00904'] +boolq,huggingface,[{'title': 'BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions'}] +yhavinga/ccmatrix,yhavinga,['arxiv.org/abs/1911.04944'] +mlqa,huggingface,[{'title': 'MLQA: Evaluating Cross-lingual Extractive Question Answering'}] +wnut_17,huggingface,['bibtex'] +tapaco,huggingface,['doi.org/10.5281/zenodo.3707949}'] +senti_lex,huggingface,['bibtex'] +ted_talks_iwslt,huggingface,['bibtex'] +relbert/analogy_questions,relbert,[{'title': '{BERT'}] +paws-x,huggingface,['arxiv.org/abs/1908.11828'] +commonsense_qa,huggingface,"['arxiv.org/abs/1811.00937', 'bibtex']" +codeparrot/apps,codeparrot,"['arxiv.org/abs/2105.09938', {'title': 'Measuring Coding Challenge Competence With APPS'}]" +gsarti/wmt_vat,gsarti,[{'title': 'Variance-Aware Machine Translation Test Sets'}] +sst,huggingface,['bibtex'] +acronym_identification,huggingface,"['doi.org/10.18653/v1/2020.coling-main.292},', 'bibtex']" +hans,huggingface,"['arxiv.org/abs/1902.01007', 'bibtex']" +ethos,huggingface,['arxiv.org/abs/2006.08328'] +indic_glue,huggingface,['bibtex'] +joelito/mapa,joelito,['bibtex'] +scene_parse_150,huggingface,"['arxiv.org/abs/1608.05442', {'title': 'Scene Parsing through ADE20K Dataset'}]" +poem_sentiment,huggingface,['arxiv.org/abs/2011.02686'] +xcopa,huggingface,[{'title': '{XCOPA: A'}] +tasksource/mmlu,tasksource,[{'title': 'Measuring Massive Multitask Language Understanding'}] +beyond/chinese_clean_passages_80m,beyond,"['doi.org/10.5281/zenodo.3402023}', {'title': 'GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation'}]" +scientific_papers,huggingface,"['arxiv.org/abs/1804.05685', 'doi.org/10.18653/v1/n18-2097},', 'bibtex']" +ade_corpus_v2,huggingface,"['doi.org/10.1016/j.jbi.2012.04.008"",', 'bibtex']" +banking77,huggingface,"['arxiv.org/abs/2003.04807', 'bibtex']" +silicone,huggingface,"['arxiv.org/abs/2009.11152', 'bibtex']" +clarin-pl/polemo2-official,clarin-pl,['bibtex'] +go_emotions,huggingface,"['arxiv.org/abs/2005.00547', 'bibtex']" +openslr,huggingface,"['doi.org/10.21437/Interspeech.2017-1139}', {'title': '{Rapid development of TTS corpora for four South African languages'}]" +math_qa,huggingface,['bibtex'] +AmazonScience/massive,AmazonScience,"['arxiv.org/abs/2204.08582', 'bibtex']" +allenai/metaicl-data,allenai,"['arxiv.org/abs/2005.00700', {'title': ' Meta{ICL'}]" +GEM/xlsum,GEM,"['arxiv.org/abs/1607.01759', 'bibtex']" +pubmed_qa,huggingface,['arxiv.org/abs/1909.06146'] +lmqg/qg_jaquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +mlsum,huggingface,[{'title': 'MLSUM: The Multilingual Summarization Corpus'}] +pib,huggingface,"['arxiv.org/abs/2008.04860', 'doi.org/10.1145/3430984.3431026},', 'bibtex']" +Babelscape/wikineural,Babelscape,"['arxiv.org/abs/1810.04805', 'bibtex']" +clue,huggingface,['bibtex'] +cppe-5,huggingface,['arxiv.org/abs/2112.09569'] +dane,huggingface,['bibtex'] +hotpot_qa,huggingface,"['arxiv.org/abs/1809.09600', {'title': '{HotpotQA'}]" +yelp_polarity,huggingface,['bibtex'] +hate_speech18,huggingface,['bibtex'] +stanfordnlp/SHP,stanfordnlp,['arxiv.org/abs/2001.08435'] +xquad_r,huggingface,[{'title': 'LAReQA: Language-agnostic answer retrieval from a multilingual pool'}] +metashift,huggingface,['arxiv.org/abs/2202.06523'] +iwslt2017,huggingface,['bibtex'] +code_search_net,huggingface,"['arxiv.org/abs/1909.09436', {'title': '{CodeSearchNet'}]" +ncbi_disease,huggingface,[{'title': 'NCBI disease corpus: a resource for disease name recognition and concept normalization'}] +lmqg/qg_itquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +polyglot_ner,huggingface,['bibtex'] +openai/summarize_from_feedback,openai,"['arxiv.org/abs/2009.01325', 'bibtex']" +mkb,huggingface,['arxiv.org/abs/2007.07691'] +food101,huggingface,[{'title': 'Food-101 -- Mining Discriminative Components with Random Forests'}] +hate_speech_offensive,huggingface,"['arxiv.org/abs/1703.04009', {'title': 'Automated Hate Speech Detection and the Problem of Offensive Language'}]" +vialibre/splittedspanish3bwc,vialibre,"['doi.org/10.5281/zenodo.3247731)', {'title': 'Spanish Pre-Trained BERT Model and Evaluation Data'}]" +tner/wnut2017,tner,['bibtex'] +lama,huggingface,[{'title': 'Language Models as Knowledge Bases?'}] +google/MusicCaps,google,['arxiv.org/abs/2301.11325'] +winograd_wsc,huggingface,[{'title': 'The winograd schema challenge'}] +allenai/soda,allenai,"['arxiv.org/abs/2212.10465', {'title': 'SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization'}]" +covost2,huggingface,['arxiv.org/abs/2007.10310'] +wiki_lingua,huggingface,"['arxiv.org/abs/2010.03093', {'title': 'WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization'}]" +snips_built_in_intents,huggingface,['arxiv.org/abs/1805.10190'] +multi_x_science_sum,huggingface,"['arxiv.org/abs/2010.14235', {'title': 'Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles'}]" +xcsr,huggingface,"['arxiv.org/abs/2106.06937', 'bibtex']" +nuprl/MultiPL-E,nuprl,['arxiv.org/abs/2208.08227'] +germeval_14,huggingface,[{'title': 'NoSta-D Named Entity Annotation for German: Guidelines and Dataset'}] +hyperpartisan_news_detection,huggingface,[{'title': 'Data for pan at semeval 2019 task 4: Hyperpartisan news detection'}] +juletxara/xstory_cloze,juletxara,"['arxiv.org/abs/2112.10668', 'bibtex']" +multi_woz_v22,huggingface,"['arxiv.org/abs/1810.00278', {'title': 'Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing'}]" +timit_asr,huggingface,"['doi.org/10.35111/17gk-bn40},', {'title': 'TIMIT Acoustic-Phonetic Continuous Speech Corpus'}]" +PolyAI/minds14,PolyAI,"['arxiv.org/abs/2104.08524', 'bibtex']" +ecthr_cases,huggingface,['arxiv.org/abs/2103.13084'] +web_nlg,huggingface,"['doi.org/10.18653/v1/P17-1017},', 'bibtex']" +competition_math,huggingface,[{'title': 'Measuring Mathematical Problem Solving With the MATH Dataset'}] +pile-of-law/pile-of-law,pile-of-law,['arxiv.org/abs/2207.00220'] +fever,huggingface,['bibtex'] +lmqg/qg_squad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +jfrenz/legalglue,jfrenz,['arxiv.org/abs/2003.13016'] +xglue,huggingface,"['arxiv.org/abs/2004.01401', {'title': 'XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation'}]" +allenai/prosocial-dialog,allenai,"['arxiv.org/abs/2205.12688', {'title': 'ProsocialDialog: A Prosocial Backbone for Conversational Agents'}]" +svhn,huggingface,[{'title': 'Reading digits in natural images with unsupervised feature learning'}] +exams,huggingface,"['arxiv.org/abs/2011.03080', {'title': 'EXAMS: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering'}]" +tner/conll2003,tner,['bibtex'] +tner/bc5cdr,tner,[{'title': 'Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task'}] +asset,huggingface,['bibtex'] +americas_nli,huggingface,"['arxiv.org/abs/2104.08726', 'bibtex']" +superb,huggingface,"['arxiv.org/abs/2105.01051', 'bibtex']" +sms_spam,huggingface,[{'title': 'Contributions to the Study of SMS Spam Filtering: New Collection and Results'}] +humicroedit,huggingface,"[{'title': '"" President Vows to Cut< Taxes> Hair"": Dataset and Analysis of Creative Text Editing for Humorous Headlines'}]" +para_crawl,huggingface,['bibtex'] +climate_fever,huggingface,['arxiv.org/abs/2012.00614'] +circa,huggingface,['arxiv.org/abs/2010.03450'] +tab_fact,huggingface,"['arxiv.org/abs/1909.02164', {'title': 'TabFact : A Large-scale Dataset for Table-based Fact Verification'}]" +indonlp/indonlu,indonlp,"['arxiv.org/abs/1809.03391', {'title': 'IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding'}]" +lmqg/qg_dequad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +conllpp,huggingface,[{'title': 'CrossWeigh: Training Named Entity Tagger from Imperfect Annotations'}] +cc100,huggingface,['bibtex'] +squad_adversarial,huggingface,['bibtex'] +ms_marco,huggingface,"['arxiv.org/abs/1611.09268', 'bibtex']" +evidence_infer_treatment,huggingface,"['arxiv.org/abs/2005.04177', {'title': 'Inferring Which Medical Treatments Work from Reports of Clinical Trials'}]" +BeIR/msmarco,BeIR,[{'title': '{BEIR'}] +e2e_nlg,huggingface,"['arxiv.org/abs/1706.09254', {'title': 'Evaluating the {{State'}]" +rvl_cdip,huggingface,"['arxiv.org/abs/1502.07058', {'title': 'Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval'}]" +common_language,huggingface,['doi.org/10.5281/zenodo.5036977}'] +metaeval/babi_nli,metaeval,[{'title': 'Towards ai-complete question answering: A set of prerequisite toy tasks'}] +medical_questions_pairs,huggingface,['arxiv.org/abs/2008.13546'] +selqa,huggingface,['arxiv.org/abs/1606.00851'] +blended_skill_talk,huggingface,['arxiv.org/abs/2004.08449'] +discovery,huggingface,['bibtex'] +ehealth_kd,huggingface,['bibtex'] +clarin-pl/kpwr-ner,clarin-pl,['bibtex'] +un_multi,huggingface,['bibtex'] +cyberagent/crello,cyberagent,"['arxiv.org/abs/2108.01249', {'title': 'CanvasVAE: Learning to Generate Vector Graphic Documents'}]" +health_fact,huggingface,"['arxiv.org/abs/2010.09926', 'bibtex']" +conv_ai_2,huggingface,"['arxiv.org/abs/1902.00098', 'bibtex']" +discofuse,huggingface,['arxiv.org/abs/1902.10526'] +mc_taco,huggingface,"['arxiv.org/abs/1909.03065', 'bibtex']" +neulab/conala,neulab,[{'title': 'Learning to mine aligned code and natural language pairs from stack overflow'}] +para_pat,huggingface,"['doi.org/10.6084/m9.figshare.12627632)', 'bibtex']" +conll2012_ontonotesv5,huggingface,['bibtex'] +liar,huggingface,['arxiv.org/abs/1705.00648'] +wiki_asp,huggingface,['arxiv.org/abs/2011.07832'] +joelito/covid19_emergency_event,joelito,"['doi.org/10.18653/v1/2021.nllp-1.5', 'bibtex']" +recipe_nlg,huggingface,['bibtex'] +blbooksgenre,huggingface,['doi.org/10.23636/BKHQ-0312](https://doi.org/10.23636/BKHQ-0312)'] +big_patent,huggingface,"['arxiv.org/abs/1906.03741', 'bibtex']" +ccdv/arxiv-summarization,ccdv,['bibtex'] +wikimedia/wit_base,wikimedia,"['arxiv.org/abs/2103.01913', {'title': 'WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning'}]" +emo,huggingface,[{'title': 'SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text'}] +wikitablequestions,huggingface,"['arxiv.org/abs/1508.00305', 'bibtex']" +asapp/slue,asapp,[{'title': 'Slue: New benchmark tasks for spoken language understanding evaluation on natural speech'}] +GEM/e2e_nlg,GEM,"['doi.org/10.1016/j.csl.2019.06.009),', 'bibtex']" +BeIR/fiqa,BeIR,[{'title': '{BEIR'}] +head_qa,huggingface,['bibtex'] +tner/wikiann,tner,['bibtex'] +truthful_qa,huggingface,['arxiv.org/abs/2109.07958'] +docred,huggingface,"['arxiv.org/abs/1906.06127', {'title': '{DocRED'}]" +monash_tsf,huggingface,['doi.org/10.1016/j.ijforecast.2010.04.009)'] +aqua_rat,huggingface,[{'title': 'Program induction by rationale generation: Learning to solve and explain algebraic word problems'}] +empathetic_dialogues,huggingface,"['arxiv.org/abs/1811.00207', 'bibtex']" +un_pc,huggingface,['bibtex'] +knkarthick/dialogsum,knkarthick,['bibtex'] +clinc_oos,huggingface,['bibtex'] +ccdv/pubmed-summarization,ccdv,['bibtex'] +spider,huggingface,[{'title': 'Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task'}] +art,huggingface,"['arxiv.org/abs/1908.05739', {'title': 'Abductive Commonsense Reasoning'}]" +lince,huggingface,['bibtex'] +reuters21578,huggingface,['bibtex'] +cardiffnlp/tweet_sentiment_multilingual,cardiffnlp,['bibtex'] +aeslc,huggingface,"['arxiv.org/abs/1906.03497', 'bibtex']" +bigbio/pubmed_qa,bigbio,[{'title': 'PubMedQA: A Dataset for Biomedical Research Question Answering'}] +turk,huggingface,['bibtex'] +SirNeural/flan_v2,SirNeural,['arxiv.org/abs/2301.13688'] +enriched_web_nlg,huggingface,"['doi.org/10.18653/v1/P17-1017},', 'bibtex']" +imppres,huggingface,['bibtex'] +craigslist_bargains,huggingface,['arxiv.org/abs/1808.09637'] +narrativeqa,huggingface,['bibtex'] +google_wellformed_query,huggingface,['arxiv.org/abs/1808.09419'] +conceptual_captions,huggingface,"[{'title': 'Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning'}]" +edbeeching/decision_transformer_gym_replay,edbeeching,['arxiv.org/abs/2004.07219'] +ambig_qa,huggingface,[{'title': ' Natural questions: a benchmark for question answering research'}] +un_ga,huggingface,['bibtex'] +conv_ai_3,huggingface,['arxiv.org/abs/2009.11352'] +ucberkeley-dlab/measuring-hate-speech,ucberkeley-dlab,"['arxiv.org/abs/2009.10277', {'title': 'Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application'}]" +biosses,huggingface,[{'title': 'BIOSSES: a semantic sentence similarity estimation system for the biomedical domain'}] +sem_eval_2010_task_8,huggingface,['bibtex'] +Muennighoff/flores200,Muennighoff,"['arxiv.org/abs/2207.04672', 'bibtex']" +castorini/mr-tydi,castorini,[{'title': '{Mr. TyDi'}] +md_gender_bias,huggingface,['bibtex'] +numer_sense,huggingface,"['arxiv.org/abs/2005.00683', {'title': 'Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models'}]" +sem_eval_2018_task_1,huggingface,['doi.org/10.18653/v1/S18-1001'] +ted_hrlr,huggingface,['bibtex'] +code_x_glue_cc_code_refinement,huggingface,[{'title': 'CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence'}] +coqa,huggingface,"['arxiv.org/abs/1808.07042', 'bibtex']" +quac,huggingface,"['arxiv.org/abs/1808.07036', 'bibtex']" +wiki_snippets,huggingface,[{'title': 'Wiki-40B: Multilingual Language Model Dataset'}] +hlgd,huggingface,[{'title': 'News Headline Grouping as a Challenging NLU Task'}] +freebase_qa,huggingface,['bibtex'] +mwsc,huggingface,"['arxiv.org/abs/1806.08730', {'title': 'The Natural Language Decathlon: Multitask Learning as Question Answering'}]" +movie_rationales,huggingface,['bibtex'] +e2e_nlg_cleaned,huggingface,"['arxiv.org/abs/1706.09254', {'title': 'Evaluating the {{State'}]" +cuad,huggingface,"['arxiv.org/abs/2103.06268', {'title': 'CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review'}]" +code_x_glue_tc_text_to_code,huggingface,[{'title': 'Mapping language to code in programmatic context'}] +covid_qa_castorini,huggingface,"['arxiv.org/abs/2004.11339', {'title': 'Rapidly Bootstrapping a Question Answering Dataset for COVID-19'}]" +code_x_glue_cc_code_to_code_trans,huggingface,[{'title': 'CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence'}] +gutenberg_time,huggingface,['arxiv.org/abs/2011.04124'] +qed,huggingface,['arxiv.org/abs/2009.06354'] +drop,huggingface,['bibtex'] +tmu_gfm_dataset,huggingface,['bibtex'] +nq_open,huggingface,"['doi.org/10.1162/tacl_a_00276', 'bibtex']" +flue,huggingface,['arxiv.org/abs/1912.05372'] +ai4bharat/samanantar,ai4bharat,['arxiv.org/abs/2104.05596'] +castorini/mr-tydi-corpus,castorini,[{'title': '{Mr. TyDi'}] +nlu_evaluation_data,huggingface,['arxiv.org/abs/1903.05566'] +allenai/real-toxicity-prompts,allenai,"['arxiv.org/abs/2009.11462', {'title': 'Realtoxicityprompts: Evaluating neural toxic degeneration in language models'}]" +dair-ai/emotion,dair-ai,['bibtex'] +ashraq/esc50,ashraq,['doi.org/10.1145/2733373.2806390]'] +masakhaner,huggingface,"['arxiv.org/abs/2103.11811', {'title': 'MasakhaNER: Named Entity Recognition for African Languages'}]" +tner/ontonotes5,tner,['bibtex'] +opus_paracrawl,huggingface,['bibtex'] +newspop,huggingface,"['arxiv.org/abs/1801.07055', {'title': 'Multi-Source Social Feedback of Online News Feeds'}]" +facebook/multilingual_librispeech,facebook,"['arxiv.org/abs/2012.03411', {'title': 'MLS: A Large-Scale Multilingual Dataset for Speech Research'}]" +nielsr/FUNSD_layoutlmv2,nielsr,"['arxiv.org/abs/1905.13538', 'bibtex']" +allenai/multi_lexsum,allenai,"['arxiv.org/abs/2206.10883', 'doi.org/10.48550/arXiv.2206.10883},', 'bibtex']" +skt/kobest_v1,skt,"['arxiv.org/abs/2204.04541', 'doi.org/10.48550/arxiv.2204.04541,']" +bavard/personachat_truecased,bavard,"[{'title': 'Personalizing dialogue agents: I have a dog, do you have pets too?'}]" +medal,huggingface,['bibtex'] +wiki_split,huggingface,"['arxiv.org/abs/1808.09468', 'bibtex']" +assin2,huggingface,[{'title': 'The assin 2 shared task: a quick overview'}] +Hellisotherpeople/DebateSum,Hellisotherpeople,['arxiv.org/abs/2011.07251'] +elenanereiss/german-ler,elenanereiss,"['arxiv.org/abs/2003.13016', 'doi.org/10.48550/arxiv.2003.13016,']" +miam,huggingface,['bibtex'] +generated_reviews_enth,huggingface,"['arxiv.org/abs/1909.05858', {'title': 'scb-mt-en-th-2020: A Large English-Thai Parallel Corpus'}]" +limit,huggingface,['bibtex'] +arabic_billion_words,huggingface,[{'title': '1.5 billion words arabic corpus'}] +mocha,huggingface,['bibtex'] +speech_commands,huggingface,"['arxiv.org/abs/1804.03209', 'bibtex']" +castorini/afriberta-corpus,castorini,['bibtex'] +qa_zre,huggingface,['bibtex'] +tomasg25/scientific_lay_summarisation,tomasg25,['arxiv.org/abs/2210.09932'] +reasoning-machines/gsm-hard,reasoning-machines,"['arxiv.org/abs/2211.10435', {'title': 'PAL: Program-aided Language Models'}]" +kelm,huggingface,['arxiv.org/abs/2010.12688'] +zest,huggingface,"['arxiv.org/abs/2011.08115', 'bibtex']" +Hello-SimpleAI/HC3-Chinese,Hello-SimpleAI,"['arxiv.org/abs/2301.07597', 'bibtex']" +wikicorpus,huggingface,['bibtex'] +nchlt,huggingface,[{'title': 'Developing Text Resources for Ten South African Languages.'}] +corypaik/prost,corypaik,"['arxiv.org/abs/2106.03634', 'bibtex']" +rcds/swiss_judgment_prediction,rcds,['arxiv.org/abs/2110.00806'] +break_data,huggingface,[{'title': 'Break It Down: A Question Understanding Benchmark'}] +blog_authorship_corpus,huggingface,[{'title': 'Effects of age and gender on blogging.'}] +russian_super_glue,huggingface,[{'title': 'RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark'}] +BeIR/fiqa-qrels,BeIR,[{'title': '{BEIR'}] +igbo_monolingual,huggingface,['arxiv.org/abs/2004.00648'] +hatexplain,huggingface,"['arxiv.org/abs/2012.10289', {'title': 'HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection'}]" +eurlex,huggingface,['bibtex'] +code_x_glue_cc_cloze_testing_maxmin,huggingface,[{'title': 'CodeXGLUE: An Open Challenge for Code Intelligence'}] +natural_questions,huggingface,[{'title': 'Natural Questions: a Benchmark for Question Answering Research'}] +Hello-SimpleAI/HC3,Hello-SimpleAI,"['arxiv.org/abs/2301.07597', 'bibtex']" +asnq,huggingface,"['arxiv.org/abs/1911.04118', 'doi.org/10.1609/AAAI.V34I05.6282},', {'title': 'TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection'}]" +stereoset,huggingface,[{'title': 'StereoSet: Measuring stereotypical bias in pretrained language models'}] +deepset/germanquad,deepset,['arxiv.org/abs/2104.12741'] +andstor/the_pile_github,andstor,"['arxiv.org/abs/2101.00027', {'title': 'The {P'}]" +GEM/totto,GEM,"['arxiv.org/abs/1603.07771', 'bibtex']" +biomrc,huggingface,['bibtex'] +cfq,huggingface,"['arxiv.org/abs/1912.09713', 'bibtex']" +civil_comments,huggingface,"['arxiv.org/abs/1903.04561', 'bibtex']" +alt,huggingface,[{'title': 'Introduction of the asian language treebank'}] +ccaligned_multilingual,huggingface,['bibtex'] +taskmaster2,huggingface,"['arxiv.org/abs/1909.05358', {'title': 'Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset'}]" +code_x_glue_cc_cloze_testing_all,huggingface,[{'title': 'CodeXGLUE: An Open Challenge for Code Intelligence'}] +nthngdy/oscar-mini,nthngdy,"['arxiv.org/abs/2010.14571', 'bibtex']" +joelito/greek_legal_ner,joelito,['bibtex'] +deepmind/code_contests,deepmind,"['arxiv.org/abs/2203.07814', {'title': 'Competition-Level Code Generation with AlphaCode'}]" +GEM/web_nlg,GEM,['bibtex'] +kd_conv,huggingface,['bibtex'] +greek_legal_code,huggingface,"['arxiv.org/abs/2109.15298', 'doi.org/10.5281/zenodo.5528002', 'bibtex']" +bigbio/gad,bigbio,"['doi.org/10.1186/s12859-015-0472-9},', {'doi': '10.1186/s12859-015-0472-9'}]" +gsarti/clean_mc4_it,gsarti,"['arxiv.org/abs/1910.10683', {'title': 'IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation'}]" +conll2000,huggingface,['bibtex'] +miracl/miracl-corpus,miracl,['arxiv.org/abs/2210.09984'] +adv_glue,huggingface,[{'title': 'Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models'}] +unicamp-dl/mmarco,unicamp-dl,['arxiv.org/abs/2108.13897'] +totto,huggingface,"['arxiv.org/abs/2004.14373', {'title': '{ToTTo'}]" +wiki_auto,huggingface,"['arxiv.org/abs/2005.02324', 'bibtex']" +facebook/voxpopuli,facebook,"['arxiv.org/abs/2101.00390', 'bibtex']" +bookcorpusopen,huggingface,['arxiv.org/abs/2105.05241'] +codeparrot/xlcost-text-to-code,codeparrot,['arxiv.org/abs/2206.08474'] +conll2002,huggingface,['bibtex'] +harem,huggingface,[{'title': 'Harem: An advanced ner evaluation contest for portuguese'}] +assin,huggingface,[{'title': 'ASSIN: Avaliacao de similaridade semantica e inferencia textual'}] +debatelab/deepa2,debatelab,"['arxiv.org/abs/2110.01509', 'doi.org/),', {'title': 'DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models'}]" +multilingual_librispeech,huggingface,"['arxiv.org/abs/2012.03411', {'title': 'MLS: A Large-Scale Multilingual Dataset for Speech Research'}]" +lccc,huggingface,"['arxiv.org/abs/2008.03946', {'title': 'A Large-Scale Chinese Short-Text Conversation Dataset'}]" +tne,huggingface,"['arxiv.org/abs/2109.12085', 'bibtex']" +lc_quad,huggingface,[{'title': 'LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia'}] +DDSC/angry-tweets,DDSC,[{'title': 'DaNLP: An open-source toolkit for Danish Natural Language Processing'}] +autshumato,huggingface,[{'title': 'Processing parallel text corpora for three South African language pairs in the Autshumato project'}] +batterydata/abbreviation_detection,batterydata,['arxiv.org/abs/2204.12061'] +germaner,huggingface,[{'title': 'GermaNER: Free Open German Named Entity Recognition Tool'}] +Exr0n/wiki-entity-similarity,Exr0n,['arxiv.org/abs/2202.13581'] +ghomasHudson/muld,ghomasHudson,['arxiv.org/abs/2202.07362'] +nthngdy/oscar-small,nthngdy,"['arxiv.org/abs/2010.14571', 'bibtex']" +anton-l/superb,anton-l,"['arxiv.org/abs/2105.01051', 'bibtex']" +HUPD/hupd,HUPD,"['arxiv.org/abs/2207.04043', {'title': 'The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications'}]" +neuralcatcher/hateful_memes,neuralcatcher,"['arxiv.org/abs/2005.04790', 'bibtex']" +BeIR/scidocs,BeIR,[{'title': '{BEIR'}] +coastalcph/fairlex,coastalcph,"['arxiv.org/abs/2103.13868', 'bibtex']" +mrqa,huggingface,"['arxiv.org/abs/1910.09753', {'title': '{MRQA'}]" +yizhongw/self_instruct,yizhongw,['arxiv.org/abs/2212.10560'] +kmfoda/booksum,kmfoda,"['arxiv.org/abs/2105.08209', {'title': 'BookSum: A Collection of Datasets for Long-form Narrative Summarization'}]" +imagenet_sketch,huggingface,"['arxiv.org/abs/1905.13549', {'title': 'Learning Robust Global Representations by Penalizing Local Predictive Power'}]" +newsqa,huggingface,[{'title': 'NewsQA: A Machine Comprehension Dataset'}] +shibing624/nli_zh,shibing624,['arxiv.org/abs/1908.11828'] +cmrc2018,huggingface,['bibtex'] +cedr,huggingface,[{'title': 'Data-Driven Model for Emotion Detection in Russian Texts'}] +llangnickel/long-covid-classification-data,llangnickel,"['doi.org/10.1093/database/baac048).', 'bibtex']" +mt_eng_vietnamese,huggingface,['bibtex'] +woz_dialogue,huggingface,['arxiv.org/abs/1604.04562'] +bprec,huggingface,['bibtex'] +opus_wikipedia,huggingface,"['doi.org/10.1016/j.protcy.2014.11.024},', {'title': 'Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs'}]" +sberquad,huggingface,"['arxiv.org/abs/1912.09723', 'bibtex']" +stjiris/portuguese-legal-sentences-v0,stjiris,['bibtex'] +allenai/s2orc,allenai,"['doi.org/10.1093/llc/fqu052""']" +reasoning_bg,huggingface,"['arxiv.org/abs/1908.01519', {'title': 'Beyond english-only reading comprehension: Experiments in zero-shot multilingual transfer for bulgarian'}]" +EMBO/sd-nlp,EMBO,['doi.org/10.1038/nmeth.4471).'] +pietrolesci/gen_debiased_nli,pietrolesci,['bibtex'] +dynabench/dynasent,dynabench,"['arxiv.org/abs/2012.15349', {'title': '{DynaSent'}]" +bsd_ja_en,huggingface,['bibtex'] +GEM/BiSECT,GEM,['bibtex'] +tweet_qa,huggingface,"['arxiv.org/abs/1907.06292', {'title': 'TweetQA: A Social Media Focused Question Answering Dataset'}]" +squad_kor_v2,huggingface,['bibtex'] +sede,huggingface,['arxiv.org/abs/2106.05006'] +sentiment140,huggingface,[{'title': 'Twitter sentiment classification using distant supervision'}] +DFKI-SLT/few-nerd,DFKI-SLT,['bibtex'] +few_rel,huggingface,['bibtex'] +patriziobellan/PET,patriziobellan,"['arxiv.org/abs/2203.04860', 'doi.org/10.48550/arXiv.2203.04860},', 'bibtex']" +relbert/lexical_relation_classification,relbert,['bibtex'] +blbooks,huggingface,['doi.org/10.21250/db14'] +allenai/scitldr,allenai,"['arxiv.org/abs/2004.15011', {'title': '{TLDR'}]" +wisesight_sentiment,huggingface,['doi.org/10.5281/zenodo.3457447}'] +lener_br,huggingface,['bibtex'] +IlyaGusev/gazeta,IlyaGusev,['arxiv.org/abs/2006.11063'] +iapp_wiki_qa_squad,huggingface,['doi.org/10.5281/zenodo.4539916}'] +google/xtreme_s,google,"['arxiv.org/abs/2203.10752', {'title': 'XTREME-S: Evaluating Cross-lingual Speech Representations'}]" +mteb/amazon_counterfactual,mteb,['arxiv.org/abs/2104.06893'] +europa_ecdc_tm,huggingface,['doi.org/10.1007/s10579-014-9277-0}'] +IlyaGusev/headline_cause,IlyaGusev,['arxiv.org/abs/2108.12626'] +xed_en_fi,huggingface,"['arxiv.org/abs/2011.01612', {'title': 'XED: A Multilingual Dataset for Sentiment Analysis and Emotion Detection'}]" +mkqa,huggingface,['arxiv.org/abs/2007.15207'] +SetFit/amazon_counterfactual,SetFit,['arxiv.org/abs/2104.06893'] +code_x_glue_tt_text_to_text,huggingface,[{'title': 'CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence'}] +Muennighoff/flan,Muennighoff,['arxiv.org/abs/2109.01652'] +ekinakyurek/ftrace,ekinakyurek,"['arxiv.org/abs/2205.11482', 'doi.org/10.48550/arxiv.2205.11482,', {'title': 'Language Models as Knowledge Bases?'}]" +ai4bharat/naamapadam,ai4bharat,['arxiv.org/abs/2212.10168'] +orange_sum,huggingface,"['arxiv.org/abs/2010.12321', {'title': 'BARThez: a Skilled Pretrained French Sequence-to-Sequence Model'}]" +matinf,huggingface,['bibtex'] +qanta,huggingface,"['arxiv.org/abs/1904.04792', {'title': 'Quizbowl: The Case for Incremental Question Answering'}]" +lewtun/github-issues,lewtun,"['arxiv.org/abs/2005.00614', 'doi.org/),', 'bibtex']" +hope_edi,huggingface,['bibtex'] +the_pile_books3,huggingface,"['arxiv.org/abs/2101.00027', {'title': 'The {P'}]" +sharc_modified,huggingface,['arxiv.org/abs/1909.03759'] +web_of_science,huggingface,[{'title': 'HDLTex: Hierarchical Deep Learning for Text Classification'}] +chr_en,huggingface,"['arxiv.org/abs/2010.04791', {'title': 'ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization'}]" +nell,huggingface,['bibtex'] +squad_es,huggingface,['bibtex'] +snow_simplified_japanese_corpus,huggingface,['bibtex'] +dynabench/qa,dynabench,"['arxiv.org/abs/2002.00293', 'doi.org/10.1162/tacl_a_00338', 'bibtex']" +kinnews_kirnews,huggingface,"['arxiv.org/abs/2010.12174', {'title': 'KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi'}]" +medical_dialog,huggingface,"['arxiv.org/abs/2004.03329', {'title': 'MedDialog: a large-scale medical dialogue dataset'}]" +pec,huggingface,['bibtex'] +definite_pronoun_resolution,huggingface,[{'title': 'Resolving complex cases of definite pronouns: the winograd schema challenge'}] +alisawuffles/WANLI,alisawuffles,['arxiv.org/abs/2201.05955'] +covid_qa_deepset,huggingface,[{'title': 'COVID-QA: A Question Answering Dataset for COVID-19'}] +shunk031/wrime,shunk031,['bibtex'] +dennlinger/eur-lex-sum,dennlinger,"['arxiv.org/abs/2210.13448', 'bibtex']" +schema_guided_dstc8,huggingface,"['arxiv.org/abs/1909.05855', 'bibtex']" +joelito/legalnero,joelito,"['doi.org/10.18653/v1/2021.nllp-1.2', 'bibtex']" +BeIR/msmarco-qrels,BeIR,[{'title': '{BEIR'}] +adithya7/xlel_wd,adithya7,"['arxiv.org/abs/2204.06535', {'title': 'Multilingual Event Linking to Wikidata'}]" +c3,huggingface,"['arxiv.org/abs/1904.09679', {'title': 'Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension'}]" +pierreguillou/DocLayNet-small,pierreguillou,"['arxiv.org/abs/2206.01062', 'doi.org/10.1145/3534678.3539043', {'title': 'DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation'}]" +swda,huggingface,"['arxiv.org/abs/1711.05568', 'bibtex']" +air_dialogue,huggingface,['bibtex'] +code_x_glue_cc_clone_detection_big_clone_bench,huggingface,[{'title': 'Towards a big data curated benchmark of inter-project code clones'}] +allenai/mslr2022,allenai,[{'title': 'MSˆ2: Multi-Document Summarization of Medical Studies'}] +scb_mt_enth_2020,huggingface,"['arxiv.org/abs/2007.03541', {'title': 'scb-mt-en-th-2020: A Large English-Thai Parallel Corpus'}]" +multidoc2dial,huggingface,[{'title': 'MultiDoc2Dial: Modeling Dialogues Grounded in Multiple Documents'}] +machelreid/m2d2,machelreid,"['arxiv.org/abs/2210.07370', {'title': 'M2D2: A Massively Multi-domain Language Modeling Dataset'}]" +asi/wikitext_fr,asi,"['arxiv.org/abs/1609.07843', 'bibtex']" +code_x_glue_cc_code_completion_token,huggingface,[{'title': 'Probabilistic Model for Code with Decision Trees'}] +lst20,huggingface,[{'title': 'The Annotation Guideline of LST20 Corpus'}] +allegro/klej-cdsc-e,allegro,['bibtex'] +search_qa,huggingface,"['arxiv.org/abs/1704.05179', 'bibtex']" +joelito/brazilian_court_decisions,joelito,"['arxiv.org/abs/1905.10348', 'doi.org/10.7717/peerj-cs.904', 'bibtex']" +nlpaueb/finer-139,nlpaueb,"['arxiv.org/abs/2203.06482', {'title': 'FiNER: Financial Numeric Entity Recognition for XBRL Tagging'}]" +jnlpba,huggingface,['bibtex'] +nli_tr,huggingface,['bibtex'] +dutch_social,huggingface,['doi.org/10.5072/FK2/MTPTL7'] +europa_eac_tm,huggingface,['doi.org/10.1007/s10579-014-9277-0}'] +scielo,huggingface,"['arxiv.org/abs/1905.01852', {'title': 'A Large Parallel Corpus of Full-Text Scientific Articles'}]" +HuggingFaceH4/stack-exchange-preferences,HuggingFaceH4,['arxiv.org/abs/2112.00861'] +arxiv_dataset,huggingface,['arxiv.org/abs/1905.00075'] +pn_summary,huggingface,"['arxiv.org/abs/2012.11204', {'title': 'Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization'}]" +doc2dial,huggingface,['bibtex'] +wider_face,huggingface,"['arxiv.org/abs/1511.06523', 'bibtex']" +persian_ner,huggingface,['bibtex'] +tweets_ar_en_parallel,huggingface,[{'title': 'Constructing a Bilingual Corpus of Parallel Tweets'}] +allenai/scifact,allenai,['bibtex'] +bertin-project/mc4-es-sampled,bertin-project,"['arxiv.org/abs/1910.10683', 'bibtex']" +kor_nli,huggingface,[{'title': 'KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding'}] +pg19,huggingface,"['arxiv.org/abs/1911.05507', 'bibtex']" +cakiki/args_me,cakiki,['doi.org/10.5281/zenodo.4139439}'] +swedish_medical_ner,huggingface,[{'title': 'Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs'}] +tau/sled,tau,[{'title': 'Efficient Long-Text Understanding with Short-Text Models'}] +bigbio/biored,bigbio,"['doi.org/10.48550/arXiv.2204.04263},', 'bibtex']" +GEM/wiki_cat_sum,GEM,"['arxiv.org/abs/1906.04687', 'bibtex']" +offenseval_dravidian,huggingface,['bibtex'] +tuple_ie,huggingface,[{'title': 'Answering Complex Questions Using Open Information Extraction'}] +society-ethics/lila_camera_traps,society-ethics,"['doi.org/10.1007/978-3-030-01270-0\\_28},', 'bibtex']" +edinburghcstr/ami,edinburghcstr,['arxiv.org/abs/1906.11047'] +indonli,huggingface,['bibtex'] +classla/setimes_sr,classla,['bibtex'] +GEM/turku_paraphrase_corpus,GEM,[{'title': 'Finnish Paraphrase Corpus'}] +kilt_wikipedia,huggingface,['bibtex'] +BeIR/beir,BeIR,[{'title': '{BEIR'}] +GEM/mlb_data_to_text,GEM,['bibtex'] +fake_news_english,huggingface,"['doi.org/10.1145/3201064.3201100', 'bibtex']" +katanaml/cord,katanaml,[{'title': 'CORD: A Consolidated Receipt Dataset for Post-OCR Parsing'}] +id_liputan6,huggingface,"['arxiv.org/abs/2011.00679', {'title': 'Liputan6: A Large-scale Indonesian Dataset for Text Summarization'}]" +juletxara/xstory_cloze_mt_nllb-3B,juletxara,"['arxiv.org/abs/2112.10668', 'bibtex']" +the_pile_openwebtext2,huggingface,"['arxiv.org/abs/2101.00027', {'title': 'The {P'}]" +code_x_glue_cc_defect_detection,huggingface,[{'title': 'Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks'}] +hybrid_qa,huggingface,"['arxiv.org/abs/1909.05358', {'title': 'HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data'}]" +offenseval2020_tr,huggingface,['bibtex'] +kor_nlu,huggingface,['arxiv.org/abs/2004.03289'] +thegoodfellas/brwac_tiny,thegoodfellas,[{'title': 'The brwac corpus: A new open resource for brazilian portuguese'}] +ronec,huggingface,"['arxiv.org/abs/1909.01247', {'title': 'Introducing RONEC--the Romanian Named Entity Corpus'}]" +taskmaster1,huggingface,"['arxiv.org/abs/1909.05358', {'title': 'Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset'}]" +ubuntu_dialogs_corpus,huggingface,"['arxiv.org/abs/1506.08909', 'bibtex']" +allenai/cord19,allenai,"['arxiv.org/abs/2004.07180', {'title': 'CORD-19: The Covid-19 Open Research Dataset'}]" +McGill-NLP/FaithDial,McGill-NLP,"['arxiv.org/abs/2204.10757', {'title': 'FaithDial: A Faithful Benchmark for Information-Seeking Dialogue'}]" +NbAiLab/norne,NbAiLab,['arxiv.org/abs/1911.12146'] +language-and-voice-lab/samromur_asr,language-and-voice-lab,['bibtex'] +cfilt/iitb-english-hindi,cfilt,['bibtex'] +MLCommons/ml_spoken_words,MLCommons,[{'title': 'Multilingual Spoken Words Corpus'}] +vivos,huggingface,"['doi.org/10.5281/zenodo.7068130', 'bibtex']" +allenai/csabstruct,allenai,"['arxiv.org/abs/1909.04054', {'title': 'Pretrained Language Models for Sequential Sentence Classification'}]" +arcd,huggingface,['bibtex'] +casino,huggingface,[{'title': 'CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems'}] +Divyanshu/indicxnli,Divyanshu,"['arxiv.org/abs/2204.08776', 'doi.org/10.48550/arxiv.2204.08776,']" +deal_or_no_dialog,huggingface,"['arxiv.org/abs/1706.05125', {'title': 'Deal or no deal? end-to-end learning for negotiation dialogues'}]" +covid_qa_ucsd,huggingface,"['arxiv.org/abs/2005.05442', {'title': 'CovidDialog: Medical Dialogue Datasets about COVID-19'}]" +indonlp/NusaX-senti,indonlp,['arxiv.org/abs/2205.15960'] +masakhane/masakhaner2,masakhane,"['arxiv.org/abs/2103.11811', {'title': 'MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition'}]" +wmt20_mlqe_task2,huggingface,['arxiv.org/abs/1902.08646'] +tner/multinerd,tner,['bibtex'] +joelito/online_terms_of_service,joelito,"['doi.org/10.18653/v1/2021.nllp-1.1', 'bibtex']" +newsroom,huggingface,['bibtex'] +hate_speech_pl,huggingface,"[{'title': ""Czy komputer rozpozna hejtera? Wykorzystanie uczenia maszynowego (ML) w jako{\\'s""}]" +code_x_glue_cc_code_completion_line,huggingface,[{'title': 'Probabilistic Model for Code with Decision Trees'}] +csebuetnlp/xnli_bn,csebuetnlp,['arxiv.org/abs/2101.00204'] +silver/personal_dialog,silver,"['arxiv.org/abs/1901.09672', {'title': 'Personalized dialogue generation with diversified traits'}]" +lmqg/qag_squad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +projecte-aina/parlament_parla,projecte-aina,"['doi.org/10.5281/zenodo.5541827}', {'title': 'ParlamentParla: A Speech Corpus of Catalan Parliamentary Sessions'}]" +squad_v1_pt,huggingface,['bibtex'] +GEM/mlsum,GEM,['bibtex'] +GEM/schema_guided_dialog,GEM,"['arxiv.org/abs/1909.05855', {'title': 'Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset'}]" +LIUM/tedlium,LIUM,[{'title': 'TED-LIUM: an Automatic Speech Recognition dedicated corpus'}] +fquad,huggingface,['arxiv.org/abs/2002.06071'] +electricity_load_diagrams,huggingface,"['doi.org/10.1145/3209978.3210006},', 'bibtex']" +id_clickbait,huggingface,"['doi.org/10.1016/j.dib.2020.106231"",', 'bibtex']" +ascent_kb,huggingface,['arxiv.org/abs/2011.00905'] +indonlp/NusaX-MT,indonlp,['arxiv.org/abs/2205.15960'] +aslg_pc12,huggingface,[{'title': 'English-asl gloss parallel corpus 2012: Aslg-pc12'}] +EMBO/sd-nlp-non-tokenized,EMBO,['doi.org/10.1038/nmeth.4471).'] +allenai/qasper,allenai,"['arxiv.org/abs/2105.03011', {'title': 'A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers'}]" +cdsc,huggingface,[{'title': 'Polish evaluation dataset for compositional distributional semantics models'}] +eu_regulatory_ir,huggingface,"['arxiv.org/abs/2101.10726', 'bibtex']" +hebrew_sentiment,huggingface,['bibtex'] +GEM/OrangeSum,GEM,['bibtex'] +labr,huggingface,[{'title': 'Labr: A large scale arabic book reviews dataset'}] +told-br,huggingface,"['arxiv.org/abs/2010.04543', 'bibtex']" +xor_tydi_qa,huggingface,"['arxiv.org/abs/2010.11856', {'title': 'XOR QA: Cross-lingual Open-Retrieval Question Answering'}]" +compguesswhat,huggingface,[{'title': 'CompGuessWhat?!: a Multi-task Evaluation Framework for Grounded Language Learning'}] +wi_locness,huggingface,['bibtex'] +DDSC/partial-danish-gigaword-no-twitter,DDSC,[{'title': '{The Danish Gigaword Corpus'}] +metaeval/scinli,metaeval,['bibtex'] +py_ast,huggingface,"['doi.org/10.1145/2983990.2984041},', 'bibtex']" +ds4sd/DocLayNet,ds4sd,"['doi.org/10.1145/3534678.3539043', {'title': 'DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation'}]" +GEM/conversational_weather,GEM,['bibtex'] +dbrd,huggingface,"['arxiv.org/abs/1910.00896', 'bibtex']" +multi_booked,huggingface,"['arxiv.org/abs/1803.08614', 'bibtex']" +numeric_fused_head,huggingface,['bibtex'] +GEM/turku_hockey_data2text,GEM,['bibtex'] +med_hop,huggingface,['arxiv.org/abs/1710.06481'] +gsarti/itacola,gsarti,"['arxiv.org/abs/2109.12053', 'bibtex']" +eraser_multi_rc,huggingface,['bibtex'] +khalidalt/tydiqa-primary,khalidalt,[{'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}] +BritishLibraryLabs/EThOS-PhD-metadata,BritishLibraryLabs,['doi.org/10.23636/ybpt-nh33'] +igbo_ner,huggingface,['arxiv.org/abs/2004.00648'] +gsarti/change_it,gsarti,['bibtex'] +style_change_detection,huggingface,[{'title': 'Shared Tasks on Authorship Analysis at PAN 2020'}] +has_part,huggingface,['arxiv.org/abs/2006.07510'] +irc_disentangle,huggingface,"['arxiv.org/abs/1810.11118', 'bibtex']" +renumics/dcase23-task2-enriched,renumics,"['arxiv.org/abs/2205.13879', 'doi.org/10.5281/zenodo.7687464}']" +classla/FRENK-hate-hr,classla,['arxiv.org/abs/1906.02045'] +classla/FRENK-hate-sl,classla,['arxiv.org/abs/1906.02045'] +classla/FRENK-hate-en,classla,['arxiv.org/abs/1906.02045'] +ollie,huggingface,['bibtex'] +khalidalt/tydiqa-goldp,khalidalt,[{'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}] +deepset/germandpr,deepset,['arxiv.org/abs/2104.12741'] +vctk,huggingface,"['doi.org/10.7488/ds/2645)', {'title': 'CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit'}]" +GEM/dart,GEM,"['doi.org/10.5204/mcj.315)).', 'bibtex']" +sileod/probability_words_nli,sileod,[{'title': 'Probing neural language models for understanding of words of estimative probability'}] +BeIR/beir-corpus,BeIR,[{'title': '{BEIR'}] +dennlinger/klexikon,dennlinger,"['arxiv.org/abs/2201.07198', 'bibtex']" +PlanTL-GOB-ES/SQAC,PlanTL-GOB-ES,"['arxiv.org/abs/1606.05250', 'bibtex']" +bigbio/chemprot,bigbio,['bibtex'] +ro_sent,huggingface,[{'title': 'The birth of Romanian BERT'}] +demelin/moral_stories,demelin,"[{'title': 'Moral Stories: Situated Reasoning about Norms, Intents, Actions, and their Consequences'}]" +onestop_qa,huggingface,"['arxiv.org/abs/2004.14797', 'bibtex']" +cail2018,huggingface,['arxiv.org/abs/1807.02478'] +ctu-aic/ctkfacts_nli,ctu-aic,['arxiv.org/abs/2201.11115'] +narrativeqa_manual,huggingface,['bibtex'] +arsentd_lev,huggingface,"['arxiv.org/abs/1906.01830', {'title': 'Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets'}]" +crawl_domain,huggingface,[{'title': 'Semi-supervised URL Segmentation with Recurrent Neural Networks Pre-trained on Knowledge Graph Entities'}] +curiosity_dialogs,huggingface,[{'title': 'Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity'}] +AmazonScience/mintaka,AmazonScience,['bibtex'] +bigbio/bc7_litcovid,bigbio,['bibtex'] +dart,huggingface,"['arxiv.org/abs/2007.02871', {'title': 'DART: Open-Domain Structured Data Record to Text Generation'}]" +GEM/sportsett_basketball,GEM,['bibtex'] +gfissore/arxiv-abstracts-2021,gfissore,['arxiv.org/abs/1905.00075'] +eli5_category,huggingface,['bibtex'] +caner,huggingface,['bibtex'] +linnaeus,huggingface,"['doi.org/10.1186/1471-2105-11-85},', 'bibtex']" +bertin-project/mc4-sampling,bertin-project,['bibtex'] +swahili_news,huggingface,['doi.org/10.5281/zenodo.4300293)'] +eugenesiow/Set5,eugenesiow,[{'title': 'Low-complexity single-image super-resolution based on nonnegative neighbor embedding'}] +social_bias_frames,huggingface,['bibtex'] +Paul/hatecheck,Paul,"['arxiv.org/abs/2012.15606', 'bibtex']" +msr_sqa,huggingface,['bibtex'] +allegro_reviews,huggingface,['bibtex'] +GEM/wiki_auto_asset_turk,GEM,"['arxiv.org/abs/1910.02677', 'bibtex']" +derek-thomas/ScienceQA,derek-thomas,"['arxiv.org/abs/2209.09513', {'title': 'Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering'}]" +per_sent,huggingface,"['arxiv.org/abs/2011.06128', {'title': ""Author's Sentiment Prediction""}]" +turkish_ner,huggingface,"['arxiv.org/abs/1702.02363', 'bibtex']" +lmqg/qa_squadshifts_synthetic,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +DFKI-SLT/mobie,DFKI-SLT,['bibtex'] +eth_py150_open,huggingface,[{'title': 'Learning and Evaluating Contextual Embedding of Source Code'}] +allenai/peer_read,allenai,"['arxiv.org/abs/1804.09635', {'title': 'A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications'}]" +hate_offensive,huggingface,"['arxiv.org/abs/1905.12516', {'title': 'Automated Hate Speech Detection and the Problem of Offensive Language'}]" +eugenesiow/Set14,eugenesiow,[{'title': 'On single image scale-up using sparse-representations'}] +hkcancor,huggingface,['bibtex'] +midas/openkp,midas,[{'title': 'Open Domain Web Keyphrase Extraction Beyond Language Modeling'}] +code_x_glue_tc_nl_code_search_adv,huggingface,[{'title': 'Codesearchnet challenge: Evaluating the state of semantic code search'}] +ar_sarcasm,huggingface,['bibtex'] +bigbio/nlm_gene,bigbio,['bibtex'] +BeIR/trec-covid,BeIR,[{'title': '{BEIR'}] +Babelscape/rebel-dataset,Babelscape,"['arxiv.org/abs/2005.00614', 'bibtex']" +code_x_glue_cc_clone_detection_poj104,huggingface,[{'title': 'Convolutional neural networks over tree structures for programming language processing'}] +BeIR/fever,BeIR,[{'title': '{BEIR'}] +thai_toxicity_tweet,huggingface,[{'title': 'Annotation and Classification of Toxicity for Thai Twitter'}] +qanastek/EMEA-V3,qanastek,['bibtex'] +best2009,huggingface,[{'title': 'BEST 2009: Thai word segmentation software contest'}] +eugenesiow/BSD100,eugenesiow,[{'title': 'A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics'}] +GEM/squad_v2,GEM,"['arxiv.org/abs/1806.03822', {'title': 'Know What You Don’t Know: Unanswerable Questions for SQuAD'}]" +ajgt_twitter_ar,huggingface,[{'title': 'Arabic tweets sentimental analysis using machine learning'}] +nlphuji/flickr30k,nlphuji,[{'title': 'From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions'}] +afrikaans_ner_corpus,huggingface,['bibtex'] +wili_2018,huggingface,['doi.org/10.5281/zenodo.841984}'] +ttc4900,huggingface,"['doi.org/10.5505/pajes.2018.15931},', 'bibtex']" +qanastek/MASSIVE,qanastek,"['arxiv.org/abs/2204.08582', 'bibtex']" +DFKI-SLT/tacred,DFKI-SLT,"['arxiv.org/abs/2104.08398', 'bibtex']" +cmu_hinglish_dog,huggingface,[{'title': 'A Dataset for Document Grounded Conversations'}] +cardiffnlp/tweet_topic_single,cardiffnlp,"['arxiv.org/abs/2209.09824', 'bibtex']" +brwac,huggingface,[{'title': 'The brwac corpus: A new open resource for brazilian portuguese'}] +bigbio/bioid,bigbio,[{'title': 'Bio-ID track overview'}] +McGill-NLP/mlquestions,McGill-NLP,['bibtex'] +x_stance,huggingface,"['arxiv.org/abs/2003.08385', 'bibtex']" +dialog_re,huggingface,"['arxiv.org/abs/2004.08056', {'title': 'Dialogue-Based Relation Extraction'}]" +diplomacy_detection,huggingface,['bibtex'] +gooaq,huggingface,"['arxiv.org/abs/2104.08727', {'title': 'GooAQ: Open Question Answering with Diverse Answer Types'}]" +conv_questions,huggingface,['arxiv.org/abs/1910.03262'] +bbaw_egyptian,huggingface,[{'title': 'Multi-Task Modeling of Phonographic Languages: Translating Middle Egyptian Hieroglyphs'}] +liveqa,huggingface,['bibtex'] +ar_cov19,huggingface,"['arxiv.org/abs/2004.05861', {'title': 'ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation Networks'}]" +bbc_hindi_nli,huggingface,['bibtex'] +flax-sentence-embeddings/Gender_Bias_Evaluation_Set,flax-sentence-embeddings,['arxiv.org/abs/1906.00591'] +crd3,huggingface,[{'title': 'Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset'}] +taskmaster3,huggingface,"['arxiv.org/abs/1909.05358', {'title': 'Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset'}]" +bn_hate_speech,huggingface,"['arxiv.org/abs/2004.07807', {'title': 'Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network'}]" +glucose,huggingface,"['arxiv.org/abs/2009.07758', {'title': 'GLUCOSE: GeneraLized and COntextualized Story Explanations'}]" +joelito/german_argument_mining,joelito,['doi.org/10.5220/0010187305150521'] +the_pile_stack_exchange,huggingface,"['arxiv.org/abs/2101.00027', {'title': 'The {P'}]" +bigbio/med_qa,bigbio,[{'title': 'What disease does this patient have? a large-scale open domain question answering dataset from medical exams'}] +kor_sae,huggingface,"['arxiv.org/abs/1912.00342', {'title': 'Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives'}]" +PlanTL-GOB-ES/cantemist-ner,PlanTL-GOB-ES,"[{'title': 'Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.'}]" +com_qa,huggingface,['bibtex'] +PlanTL-GOB-ES/pharmaconer,PlanTL-GOB-ES,['bibtex'] +grail_qa,huggingface,['arxiv.org/abs/2011.07743'] +sem_eval_2020_task_11,huggingface,['arxiv.org/abs/2009.02696'] +MoritzLaurer/multilingual-NLI-26lang-2mil7,MoritzLaurer,[{'title': 'Less {Annotating'}] +bhavnicksm/sentihood,bhavnicksm,['arxiv.org/abs/1610.03771'] +gap,huggingface,"['arxiv.org/abs/1810.05201', 'bibtex']" +atomic,huggingface,[{'title': 'ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning'}] +capes,huggingface,[{'title': 'A Parallel Corpus of Theses and Dissertations Abstracts'}] +amttl,huggingface,[{'title': 'Adaptive multi-task transfer learning for Chinese word segmentation in medical text'}] +re_dial,huggingface,[{'title': 'Towards Deep Conversational Recommendations'}] +coached_conv_pref,huggingface,[{'title': 'Coached Conversational Preference Elicitation: A Case Study in Understanding Movie Preferences'}] +hover,huggingface,['arxiv.org/abs/2011.03088'] +opinosis,huggingface,[{'title': 'Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions'}] +event2Mind,huggingface,"['arxiv.org/abs/1805.06939', 'bibtex']" +coarse_discourse,huggingface,[{'title': 'Characterizing Online Discussion Using Coarse Discourse Sequences'}] +disfl_qa,huggingface,['bibtex'] +fake_news_filipino,huggingface,[{'title': 'Localization of Fake News Detection via Multitask Transfer Learning'}] +counter,huggingface,"['doi.org/10.1007/s10579-016-9367-2""']" +hate_speech_filipino,huggingface,[{'title': 'Hate speech in Philippine election-related tweets: Automatic detection and classification using natural language processing.'}] +cawac,huggingface,['bibtex'] +hebrew_projectbenyehuda,huggingface,['bibtex'] +tals/vitaminc,tals,['bibtex'] +Llamacha/monolingual-quechua-iic,Llamacha,[{'title': 'Introducing QuBERT: A Large Monolingual Corpus and BERT Model for Southern Quechua'}] +GEM/RotoWire_English-German,GEM,['bibtex'] +msr_text_compression,huggingface,[{'title': 'A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs'}] +cs_restaurants,huggingface,"['arxiv.org/abs/1910.05298', 'bibtex']" +finer,huggingface,['arxiv.org/abs/1908.04212'] +hausa_voa_ner,huggingface,['bibtex'] +laroseda,huggingface,"['arxiv.org/abs/1901.06543', {'title': 'Clustering Word Embeddings with Self-Organizing Maps. Application on LaRoSeDa -- A Large Romanian Sentiment Data Set'}]" +hda_nli_hindi,huggingface,['bibtex'] +GEM/dstc10_track2_task2,GEM,"[{'title': '"" How Robust ru?"": Evaluating Task-Oriented Dialogue Systems on Spoken Conversations'}]" +id_panl_bppt,huggingface,['bibtex'] +mac_morpho,huggingface,[{'title': 'Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese'}] +kor_3i4k,huggingface,"['arxiv.org/abs/1811.04231', {'title': 'Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency'}]" +m_lama,huggingface,"['arxiv.org/abs/2102.00894', 'bibtex']" +tashkeela,huggingface,"[{'title': 'Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems'}]" +kor_hate,huggingface,['arxiv.org/abs/2005.12503'] +NbAiLab/NCC_small_100,NbAiLab,"['arxiv.org/abs/2104.09617', {'title': 'Operationalizing a National Digital Library: The Case for a {N'}]" +hindi_discourse,huggingface,['bibtex'] +metrec,huggingface,[{'title': 'MetRec: A dataset for meter classification of arabic poetry'}] +sofc_materials_articles,huggingface,['arxiv.org/abs/2006.03039'] +hippocorpus,huggingface,['bibtex'] +time_dial,huggingface,"['arxiv.org/abs/2106.04571', 'bibtex']" +librispeech_lm,huggingface,[{'title': 'Librispeech: an ASR corpus based on public domain audio books'}] +GEM/viggo,GEM,['bibtex'] +metooma,huggingface,[{'title': '#MeTooMA: Multi-Aspect Annotations of Tweets Related to the MeToo Movement'}] +mutual_friends,huggingface,"['arxiv.org/abs/1704.07130', 'bibtex']" +parsinlu_reading_comprehension,huggingface,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +GroNLP/divemt,GroNLP,"['arxiv.org/abs/2205.12215', 'bibtex']" +msr_genomics_kbcomp,huggingface,['bibtex'] +menyo20k_mt,huggingface,"['arxiv.org/abs/2103.08647', 'bibtex']" +PiC/phrase_similarity,PiC,[{'title': 'PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search'}] +moroco,huggingface,"['arxiv.org/abs/1901.06543', 'bibtex']" +ilist,huggingface,['bibtex'] +psc,huggingface,[{'title': 'The {P'}] +GEM/ART,GEM,"['arxiv.org/abs/1908.05739', {'title': 'Abductive Commonsense Reasoning'}]" +yoruba_text_c3,huggingface,['bibtex'] +wikitext_tl39,huggingface,['arxiv.org/abs/1907.00409'] +abdusah/masc_dev,abdusah,['doi.org/10.21227/e1qb-jv46'] +GEM/SciDuet,GEM,['bibtex'] +NYTK/HuWNLI,NYTK,[{'title': 'HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából'}] +NYTK/HuCOLA,NYTK,[{'title': 'HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából'}] +NYTK/HuSST,NYTK,[{'title': 'HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából'}] +tamilmixsentiment,huggingface,['bibtex'] +tunizi,huggingface,['arxiv.org/abs/2004.14303'] +NYTK/HuRC,NYTK,[{'title': 'HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából'}] +gigant/romanian_speech_synthesis_0_8_1,gigant,['bibtex'] +relbert/semeval2012_relational_similarity,relbert,['bibtex'] +HHousen/ParaSCI,HHousen,['arxiv.org/abs/2101.08382'] +twi_wordsim353,huggingface,['bibtex'] +newsph,huggingface,['arxiv.org/abs/2010.11574'] +swahili,huggingface,['doi.org/10.5281/zenodo.3553423'] +newsph_nli,huggingface,[{'title': 'Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation'}] +twi_text_c3,huggingface,['bibtex'] +NYTK/HuCoPA,NYTK,[{'title': 'HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából'}] +sharc,huggingface,['arxiv.org/abs/1809.01494'] +GEM/common_gen,GEM,"['arxiv.org/abs/1910.13461', 'bibtex']" +ro_sts,huggingface,[{'title': 'Liro: Benchmark and leaderboard for romanian language tasks'}] +GEM/RiSAWOZ,GEM,['bibtex'] +isixhosa_ner_corpus,huggingface,['bibtex'] +yoruba_gv_ner,huggingface,['bibtex'] +kan_hope,huggingface,['arxiv.org/abs/2108.04616'] +albertvillanova/carbon_24,albertvillanova,"['arxiv.org/abs/2110.06197', {'title': 'Crystal Diffusion Variational Autoencoder for Periodic Material Generation'}]" +isizulu_ner_corpus,huggingface,['bibtex'] +GEM/Taskmaster,GEM,"['arxiv.org/abs/2012.12458', {'title': 'TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems'}]" +CyranoB/polarity,CyranoB,['arxiv.org/abs/1509.01626'] +times_of_india_news_headlines,huggingface,['doi.org/10.7910/DVN/DPQMQH}'] +stsb_mt_sv,huggingface,"['arxiv.org/abs/2009.03116', {'title': 'Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity'}]" +GEM/surface_realisation_st_2020,GEM,['bibtex'] +GEM/cs_restaurants,GEM,['bibtex'] +refresd,huggingface,"['arxiv.org/abs/1907.05791', 'bibtex']" +opus_dogc,huggingface,['bibtex'] +GEM/cochrane-simplification,GEM,['bibtex'] +Aisha/BAAD16,Aisha,"['arxiv.org/abs/2001.05316', {'title': 'Authorship Attribution in Bangla literature using Character-level CNN'}]" +setswana_ner_corpus,huggingface,['bibtex'] +sepedi_ner,huggingface,['bibtex'] +ctu-aic/csfever,ctu-aic,['arxiv.org/abs/1803.05355'] +siswati_ner_corpus,huggingface,['bibtex'] +ro_sts_parallel,huggingface,[{'title': 'Liro: Benchmark and leaderboard for romanian language tasks'}] +SoLID/shellcode_i_a32,SoLID,"['arxiv.org/abs/2104.13100', 'bibtex']" +GEM/CrossWOZ,GEM,['bibtex'] +corypaik/coda,corypaik,['arxiv.org/abs/2110.08182'] +sesotho_ner_corpus,huggingface,['bibtex'] +pass,huggingface,['arxiv.org/abs/2109.13228'] +BSC-LT/SQAC,BSC-LT,"['arxiv.org/abs/2107.07253', 'bibtex']" +NbAiLab/bokmaal_admin,NbAiLab,"['arxiv.org/abs/2104.09617', {'title': 'Operationalizing a National Digital Library: The Case for a {N'}]" +debatelab/aaac,debatelab,['arxiv.org/abs/2110.01509'] +castorini/msmarco_v2_passage_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +allegro/klej-polemo2-out,allegro,['bibtex'] +DanL/scientific-challenges-and-directions-dataset,DanL,['arxiv.org/abs/2108.13751'] +wisesight1000,huggingface,"['doi.org/10.5281/zenodo.3457447}', {'title': 'TLex: Thai lexeme analyser based on the conditional random fields'}]" +Intel/WEC-Eng,Intel,['bibtex'] +classla/copa_hr,classla,"['arxiv.org/abs/2005.00333', 'bibtex']" +allegro/klej-polemo2-in,allegro,['bibtex'] +igbo_english_machine_translation,huggingface,['arxiv.org/abs/2004.00648'] +classla/reldi_sr,classla,"[{'title': 'Tviterasi, tviteraši or twitteraši? Producing and analysing a normalised dataset of Croatian and Serbian tweets'}]" +classla/reldi_hr,classla,"[{'title': 'Tviterasi, tviteraši or twitteraši? Producing and analysing a normalised dataset of Croatian and Serbian tweets'}]" +Firoj/HumAID,Firoj,['bibtex'] +castorini/msmarco_v1_passage_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +allegro/klej-psc,allegro,[{'title': 'The {P'}] +polsum,huggingface,['bibtex'] +BSC-LT/tecla,BSC-LT,"['doi.org/10.5281/zenodo.4627198', 'bibtex']" +castorini/msmarco_v2_doc_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +Mansooreh/sharif-emotional-speech-dataset,Mansooreh,['doi.org/10.1007/s10579-018-9427-x}'] +castorini/msmarco_v1_doc_segmented_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +castorini/msmarco_v1_doc_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +collectivat/tv3_parla,collectivat,['bibtex'] +castorini/msmarco_v2_doc_segmented_doc2query-t5_expansions,castorini,[{'title': 'From doc2query to {docTTTTTquery'}] +imvladikon/knesset_meetings_corpus,imvladikon,['doi.org/10.5281/zenodo.2707356'] +BSC-LT/ancora-ca-ner,BSC-LT,"['doi.org/10.5281/zenodo.4529299', 'bibtex']" +midas/inspec,midas,[{'title': 'Improved automatic keyword extraction given more linguistic knowledge'}] +anton-l/common_language,anton-l,['doi.org/10.5281/zenodo.5036977}'] +BSC-LT/xquad-ca,BSC-LT,"['arxiv.org/abs/1910.11856', 'doi.org/10.5281/zenodo.4526224', 'bibtex']" +BSC-LT/viquiquad,BSC-LT,"['arxiv.org/abs/1606.05250', 'doi.org/10.5281/zenodo.4562345', 'bibtex']" +BSC-LT/sts-ca,BSC-LT,"['doi.org/10.5281/zenodo.4529184', 'bibtex']" +holylovenia/recam,holylovenia,['bibtex'] +cylee/github-issues,cylee,"['arxiv.org/abs/2005.00614', 'doi.org/),', 'bibtex']" +fractalego/QA_to_statements,fractalego,['arxiv.org/abs/1809.02922'] +BeIR/scifact,BeIR,[{'title': '{BEIR'}] +visual_genome,huggingface,"['arxiv.org/abs/1602.07332', {'title': 'Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations'}]" +eugenesiow/PIRM,eugenesiow,['arxiv.org/abs/1809.07517'] +bigbio/bc5cdr,bigbio,"['doi.org/10.1093/database/baw068},', 'bibtex']" +jimregan/clarinpl_studio,jimregan,"['arxiv.org/abs/1706.00245', {'title': 'Polish read speech corpus for speech tools and services'}]" +german-nlp-group/german_common_crawl,german-nlp-group,[{'title': 'CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data'}] +bigbio/bionlp_st_2013_cg,bigbio,['bibtex'] +mariosasko/glue,mariosasko,[{'title': 'Neural Network Acceptability Judgments'}] +allenai/scicite,allenai,"['arxiv.org/abs/1904.01608', 'bibtex']" +shunk031/JGLUE,shunk031,['bibtex'] +SpeedOfMagic/ontonotes_english,SpeedOfMagic,['bibtex'] +lucasmccabe/logiqa,lucasmccabe,[{'title': 'Logiqa: A challenge dataset for machine reading comprehension with logical reasoning'}] +projecte-aina/catalanqa,projecte-aina,['arxiv.org/abs/1606.05250'] +GEM/xwikis,GEM,['arxiv.org/abs/2202.09583'] +GBaker/MedQA-USMLE-4-options,GBaker,[{'title': 'What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams'}] +philschmid/flanv2,philschmid,['arxiv.org/abs/2301.13688'] +tner/tweetner7,tner,"['arxiv.org/abs/2210.03797', 'bibtex']" +bigbio/bioasq_task_b,bigbio,['bibtex'] +BeIR/arguana,BeIR,[{'title': '{BEIR'}] +bigbio/tmvar_v3,bigbio,"['arxiv.org/abs/2204.03637', 'doi.org/10.48550/arxiv.2204.03637,']" +bigbio/ncbi_disease,bigbio,[{'title': 'NCBI disease corpus: A resource for disease name recognition and concept normalization'}] +akariasai/PopQA,akariasai,[{'title': 'When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories '}] +masakhane/mafand,masakhane,['bibtex'] +wdc/products-2017,wdc,[{'title': 'The WDC training dataset and gold standard for large-scale product matching'}] +adithya7/xlel_wd_dictionary,adithya7,"['arxiv.org/abs/2204.06535', {'title': 'Multilingual Event Linking to Wikidata'}]" +graphs-datasets/ZINC,graphs-datasets,"['doi.org/10.1021/acs.jcim.5b00559', 'bibtex']" +NeelNanda/counterfact-tracing,NeelNanda,['arxiv.org/abs/2211.00593'] +metaeval/tomi-nli,metaeval,"['arxiv.org/abs/2301.05948', {'title': 'tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation'}]" +GEM/FairytaleQA,GEM,"['arxiv.org/abs/2203.13947', 'bibtex']" +midas/kptimes,midas,[{'title': 'KPTimes: A Large-Scale Dataset for Keyphrase Generation on News Documents'}] +qwedsacf/grade-school-math-instructions,qwedsacf,[{'title': 'Training Verifiers to Solve Math Word Problems'}] +sayakpaul/nyu_depth_v2,sayakpaul,"['arxiv.org/abs/1903.03273', 'bibtex']" +midas/semeval2017,midas,"['arxiv.org/abs/1704.02853', 'bibtex']" +csebuetnlp/squad_bn,csebuetnlp,['arxiv.org/abs/2101.00204'] +jordiae/exebench,jordiae,"['doi.org/10.1145/3520312.3534867},', 'bibtex']" +lmqg/qg_squadshifts,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +ruanchaves/b2w-reviews01,ruanchaves,[{'title': 'B2W-reviews01: an open product reviews corpus'}] +BeIR/nq,BeIR,[{'title': '{BEIR'}] +relbert/t_rex_relational_similarity,relbert,[{'title': 'T-rex: A large scale alignment of natural language with knowledge base triples'}] +metaeval/sts-companion,metaeval,['bibtex'] +juny116/few_glue,juny116,['arxiv.org/abs/2012.15723'] +lmqg/qag_jaquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +StonyBrookNLP/tellmewhy,StonyBrookNLP,['bibtex'] +tner/wikineural,tner,['bibtex'] +bigbio/ebm_pico,bigbio,['bibtex'] +CodedotAI/code_clippy,CodedotAI,['arxiv.org/abs/2107.03374'] +knkarthick/samsum,knkarthick,"['arxiv.org/abs/1911.12237', 'bibtex']" +bigbio/biosses,bigbio,[{'title': 'BIOSSES: a semantic sentence similarity estimation system for the biomedical domain'}] +wanyu/IteraTeR_full_sent,wanyu,['arxiv.org/abs/2203.03802'] +ccdv/mediasum,ccdv,[{'title': 'MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization'}] +norne,huggingface,"['arxiv.org/abs/1911.12146', {'title': 'NorNE: Annotating Named Entities for Norwegian'}]" +armanc/pubmed-rct20k,armanc,[{'title': 'Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts'}] +BeIR/fever-qrels,BeIR,[{'title': '{BEIR'}] +bigbio/drugprot,bigbio,['bibtex'] +climatebert/environmental_claims,climatebert,['arxiv.org/abs/2209.00507'] +PolyAI/banking77,PolyAI,"['arxiv.org/abs/2003.04807', 'bibtex']" +allenai/scico,allenai,[{'title': 'SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts'}] +GEM/SIMPITIKI,GEM,[{'title': 'SIMPITIKI: a Simplification corpus for Italian'}] +chrishuber/kaggle_mnli,chrishuber,['arxiv.org/abs/1704.05426'] +nlphuji/winogavil,nlphuji,"['arxiv.org/abs/2207.12576', {'title': 'WinoGAViL: Gamified Association Benchmark to Challenge Vision-and-Language Models'}]" +DFKI-SLT/wikitext_linked,DFKI-SLT,[{'title': 'Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing'}] +abdusah/masc,abdusah,['doi.org/10.21227/e1qb-jv46'] +florianbussmann/FUNSD-vu2020revising,florianbussmann,"['arxiv.org/abs/2010.05322', {'title': 'Revising FUNSD dataset for key-value detection in document images'}]" +Pratik/Gujarati_OpenSLR,Pratik,"[{'title': '{Open-source Multi-speaker Speech Corpora for Building Gujarati, Kannada, Malayalam, Marathi, Tamil and Telugu Speech Synthesis Systems'}]" +biglam/nls_chapbook_illustrations,biglam,"['doi.org/10.1145/3476887.3476893},', 'bibtex']" +NbAiLab/NCC_small_divided,NbAiLab,"['arxiv.org/abs/2104.09617', {'title': 'Operationalizing a National Digital Library: The Case for a {N'}]" +ehcalabres/ravdess_speech,ehcalabres,['doi.org/10.1371/journal.pone.0196391'] +bigbio/biomrc,bigbio,['bibtex'] +HiTZ/euscrawl,HiTZ,['arxiv.org/abs/2203.08111'] +osyvokon/pavlick-formality-scores,osyvokon,['bibtex'] +guoqiang/cuge,guoqiang,['bibtex'] +bigscience/xP3megds,bigscience,['arxiv.org/abs/2211.01786'] +nlphuji/mscoco_2014_5k_test_image_text_retrieval,nlphuji,[{'title': 'Microsoft coco: Common objects in context'}] +din0s/asqa,din0s,['arxiv.org/abs/2204.06092'] +shahules786/prosocial_augmented,shahules786,[{'title': 'ProsocialDialog: A Prosocial Backbone for Conversational Agents'}] +BeIR/nfcorpus,BeIR,[{'title': '{BEIR'}] +pierreguillou/DocLayNet-base,pierreguillou,"['arxiv.org/abs/2206.01062', 'doi.org/10.1145/3534678.3539043', {'title': 'DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation'}]" +bigbio/n2c2_2018_track2,bigbio,"['doi.org/10.1093/jamia/ocz166},', 'bibtex']" +BeIR/scifact-qrels,BeIR,[{'title': '{BEIR'}] +graphs-datasets/IMDB-BINARY,graphs-datasets,"['doi.org/10.1145/2783258.2783417},', 'bibtex']" +qwant/squad_fr,qwant,['bibtex'] +bigbio/cellfinder,bigbio,[{'title': 'Annotating and evaluating text for stem cell research'}] +qanastek/ECDC,qanastek,"['doi.org/10.1007/s10579-014-9277-0},', 'bibtex']" +Anthropic/model-written-evals,Anthropic,['arxiv.org/abs/1804.09301'] +wanyu/IteraTeR_human_sent,wanyu,['arxiv.org/abs/2203.03802'] +jpwahle/autoencoder-paraphrase-dataset,jpwahle,[{'title': 'Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection'}] +BeIR/scidocs-qrels,BeIR,[{'title': '{BEIR'}] +shanya/crd3,shanya,[{'title': 'Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset'}] +DFKI-SLT/kbp37,DFKI-SLT,"['arxiv.org/abs/1508.01006', 'bibtex']" +copenlu/answerable_tydiqa,copenlu,[{'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}] +nightingal3/fig-qa,nightingal3,"['arxiv.org/abs/2204.12632', 'doi.org/10.48550/arxiv.2204.12632,']" +WillHeld/JamPatoisNLI,WillHeld,"['doi.org/10.48550/arXiv.2212.03419},', 'bibtex']" +pkavumba/balanced-copa,pkavumba,['bibtex'] +dali-does/clevr-math,dali-does,"['arxiv.org/abs/2208.05358', 'doi.org/10.48550/arxiv.2208.05358,']" +pietrolesci/ag_news,pietrolesci,[{'title': 'Character-level Convolutional Networks for Text Classification'}] +lmqg/qa_harvesting_from_wikipedia,lmqg,['bibtex'] +drAbreu/bc4chemd_ner,drAbreu,[{'title': 'The CHEMDNER corpus of chemicals and drugs and its annotation principles'}] +pierreguillou/DocLayNet-large,pierreguillou,"['arxiv.org/abs/2206.01062', 'doi.org/10.1145/3534678.3539043', {'title': 'DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation'}]" +bigbio/gnormplus,bigbio,['doi.org/10.1155/2015/918710}'] +strombergnlp/rumoureval_2019,strombergnlp,"['arxiv.org/abs/1809.06683', 'bibtex']" +koutch/dublin_programming_data,koutch,[{'title': 'user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code'}] +ai4bharat/IndicQuestionGeneration,ai4bharat,"['arxiv.org/abs/2203.05437', {'title': 'IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages'}]" +Jzuluaga/uwb_atcc,Jzuluaga,"['arxiv.org/abs/2203.16822', {'title': 'How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications'}]" +launch/open_question_type,launch,['bibtex'] +copenlu/citeworth,copenlu,[{'title': '{CiteWorth: Cite-Worthiness Detection for Improved Scientific Document Understanding'}] +csebuetnlp/BanglaParaphrase,csebuetnlp,"['arxiv.org/abs/2210.05109', {'title': 'BanglaParaphrase: A High-Quality Bangla Paraphrase Dataset'}]" +launch/gov_report,launch,['bibtex'] +persiannlp/parsinlu_translation_en_fa,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +merionum/ru_paraphraser,merionum,[{'title': 'ParaPhraser: Russian paraphrase corpus and shared task'}] +shunk031/cocostuff,shunk031,['arxiv.org/abs/1612.03716'] +lasha-nlp/CONDAQA,lasha-nlp,"['arxiv.org/abs/2211.00295', {'title': 'CONDAQA: A Contrastive Reading Comprehension Dataset for Reasoning about Negation'}]" +jpwahle/autoregressive-paraphrase-dataset,jpwahle,['arxiv.org/abs/2210.03568'] +eastwind/self-instruct-base,eastwind,['arxiv.org/abs/2212.10560'] +copenlu/scientific-exaggeration-detection,copenlu,[{'title': '{Semi-Supervised Exaggeration Detection of Health Science Press Releases'}] +COLD-team/COLD,COLD-team,[{'title': 'COLD: Annotation scheme and evaluation data set for complex offensive language in English'}] +bigbio/codiesp,bigbio,"[{'title': 'Overview of Automatic Clinical Coding: Annotations, Guidelines, and Solutions for non-English Clinical Cases at CodiEsp Track of CLEF eHealth 2020.'}]" +bond005/sberdevices_golos_100h_farfield,bond005,['arxiv.org/abs/2106.10161'] +JanosAudran/financial-reports-sec,JanosAudran,['doi.org/10.5281/zenodo.5589195'] +MilaNLProc/honest,MilaNLProc,"[{'title': '""{HONEST'}]" +TurkuNLP/xlsum-fi,TurkuNLP,['bibtex'] +BeIR/arguana-qrels,BeIR,[{'title': '{BEIR'}] +bond005/sberdevices_golos_10h_crowd,bond005,['arxiv.org/abs/2106.10161'] +tner/fin,tner,['bibtex'] +mteb/bucc-bitext-mining,mteb,['arxiv.org/abs/2104.06893'] +bigbio/chebi_nactem,bigbio,['bibtex'] +ai4bharat/IndicHeadlineGeneration,ai4bharat,"['arxiv.org/abs/2203.05437', {'title': 'IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages'}]" +cardiffnlp/tweet_topic_multi,cardiffnlp,"['arxiv.org/abs/2209.09824', 'bibtex']" +bigbio/hallmarks_of_cancer,bigbio,"['doi.org/10.1093/bioinformatics/btv585},', 'bibtex']" +qanastek/ELRC-Medical-V2,qanastek,['bibtex'] +EMBO/BLURB,EMBO,"['doi.org/10.1093/bioinformatics/btv585},', 'bibtex']" +relbert/t_rex,relbert,[{'title': 'T-rex: A large scale alignment of natural language with knowledge base triples'}] +Muennighoff/mbpp,Muennighoff,"['arxiv.org/abs/2108.07732', {'title': 'Program Synthesis with Large Language Models'}]" +kasnerz/hitab,kasnerz,[{'title': 'HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation'}] +sbu_captions,huggingface,['bibtex'] +mozilla-foundation/common_voice_1_0,mozilla-foundation,"['arxiv.org/abs/1912.06670', 'bibtex']" +juletxara/xquad_xtreme,juletxara,['bibtex'] +projecte-aina/xquad-ca,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4526223)', 'bibtex']" +OGB/ogbg-molhiv,OGB,['bibtex'] +gtfintechlab/finer-ord,gtfintechlab,[{'title': 'FiNER: Financial Named Entity Recognition Dataset and Weak-supervision Model'}] +alexfabbri/answersumm,alexfabbri,['arxiv.org/abs/2111.06474'] +AhmedSSoliman/DJANGO,AhmedSSoliman,"['doi.org/10.1109/ASE.2015.36},', 'bibtex']" +cjvt/sentinews,cjvt,"['doi.org/10.1007/s10579-018-9413-3', {'title': 'Annotated news corpora and a lexicon for sentiment analysis in Slovene'}]" +bigbio/chia,bigbio,"[{'title': 'Chia, a large annotated corpus of clinical trial eligibility criteria'}]" +MLRS/korpus_malti,MLRS,['bibtex'] +bigbio/cpi,bigbio,[{'title': 'Automated recognition of functional compound-protein relationships in literature'}] +GBaker/MedQA-USMLE-4-options-hf,GBaker,[{'title': 'What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams'}] +eloukas/edgar-corpus,eloukas,"['arxiv.org/abs/2109.14394', 'doi.org/10.18653/v1/2022.acl-long.303', 'bibtex']" +detection-datasets/fashionpedia,detection-datasets,"['arxiv.org/abs/2004.12276', {'title': 'Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset'}]" +laugustyniak/political-advertising-pl,laugustyniak,['bibtex'] +bigbio/an_em,bigbio,['bibtex'] +lara-martin/Scifi_TV_Shows,lara-martin,[{'title': 'Story Realization: Expanding Plot Events into Sentences'}] +nlp-thedeep/humset,nlp-thedeep,['bibtex'] +bigbio/scielo,bigbio,[{'title': 'A Large Parallel Corpus of Full-Text Scientific Articles'}] +bigbio/umnsrs,bigbio,[{'title': 'Semantic similarity and relatedness between clinical terms: an experimental study'}] +jonathanli/echr,jonathanli,['arxiv.org/abs/1906.02059'] +HuggingFaceH4/hhh_alignment,HuggingFaceH4,"['arxiv.org/abs/2112.00861', 'bibtex']" +jordanparker6/publaynet,jordanparker6,"['arxiv.org/abs/1908.07836', {'title': ' PubLayNet: largest dataset ever for document layout analysis '}]" +qanastek/HoC,qanastek,[{'title': 'Automatic semantic classification of scientific literature according to the hallmarks of cancer'}] +KocLab-Bilkent/turkish-constitutional-court,KocLab-Bilkent,"['doi.org/10.1016/j.ipm.2021.102684', {'title': '{Natural language processing in law: Prediction of outcomes in the higher courts of Turkey'}]" +Jzuluaga/atcosim_corpus,Jzuluaga,"['arxiv.org/abs/2203.16822', {'title': 'How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications'}]" +tomekkorbak/pile-detoxify,tomekkorbak,['arxiv.org/abs/1907.11692'] +domenicrosati/QA2D,domenicrosati,"['arxiv.org/abs/1809.02922', 'bibtex']" +bigbio/muchmore,bigbio,"[{'title': 'A multi-layered, xml-based approach to the integration of linguistic and semantic annotations'}]" +quickdraw,huggingface,"['arxiv.org/abs/1704.03477', 'bibtex']" +copenlu/spiced,copenlu,[{'title': '{Modeling Information Change in Science Communication with Semantically Matched Paraphrases'}] +SALT-NLP/ImplicitHate,SALT-NLP,['bibtex'] +bigbio/scitail,bigbio,['bibtex'] +kakaobrain/coyo-700m,kakaobrain,['arxiv.org/abs/2102.05918'] +DFKI-SLT/cross_ner,DFKI-SLT,"['arxiv.org/abs/2012.04373', {'title': 'CrossNER: Evaluating Cross-Domain Named Entity Recognition'}]" +RussianNLP/tape,RussianNLP,"['arxiv.org/abs/2210.12813', {'title': 'TAPE: Assessing Few-shot Russian Language Understanding'}]" +codeparrot/codecomplex,codeparrot,['bibtex'] +bigbio/bionlp_st_2019_bb,bigbio,['bibtex'] +bigbio/bionlp_st_2011_epi,bigbio,['bibtex'] +s-nlp/paradetox,s-nlp,['bibtex'] +zoheb/sketch-scene,zoheb,[{'title': 'FS-COCO: Towards Understanding of Freehand Sketches of Common Objects in Context.'}] +lmqg/qag_itquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +iluvvatar/RuNNE,iluvvatar,"['arxiv.org/abs/2108.13112', {'title': '{RuNNE-2022 Shared Task: Recognizing Nested Named Entities'}]" +bigbio/distemist,bigbio,['bibtex'] +albertvillanova/visual-spatial-reasoning,albertvillanova,"['arxiv.org/abs/2205.00363', {'title': 'Visual Spatial Reasoning'}]" +bigbio/bionlp_st_2011_id,bigbio,['bibtex'] +neulab/docprompting-conala,neulab,[{'title': 'DocCoder: Generating Code by Retrieving and Reading Docs'}] +bigbio/bionlp_st_2013_pc,bigbio,['bibtex'] +google/wit,google,"['arxiv.org/abs/2103.01913', {'title': 'WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning'}]" +graphs-datasets/CIFAR10,graphs-datasets,"['arxiv.org/abs/2003.00982', 'bibtex']" +lhoestq/custom_squad,lhoestq,['bibtex'] +ai4bharat/IndicSentenceSummarization,ai4bharat,"['arxiv.org/abs/2203.05437', {'title': 'IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages'}]" +BeIR/nfcorpus-qrels,BeIR,[{'title': '{BEIR'}] +thepurpleowl/codequeries,thepurpleowl,"['arxiv.org/abs/2209.08372', 'doi.org/10.48550/arxiv.2209.08372,']" +bigbio/pdr,bigbio,[{'title': 'A corpus of plant--disease relations in the biomedical domain'}] +ciempiess/ciempiess_test,ciempiess,"['doi.org/10.35111/xdx5-n815},']" +bigbio/ask_a_patient,bigbio,['bibtex'] +HuggingFaceM4/charades,HuggingFaceM4,"['arxiv.org/abs/1604.01753', 'bibtex']" +Jiangjie/ekar_chinese,Jiangjie,['bibtex'] +LLukas22/NLQuAD,LLukas22,['bibtex'] +bigbio/ddi_corpus,bigbio,"['doi.org/10.1016/j.jbi.2013.07.011},', 'bibtex']" +Short-Answer-Feedback/saf_communication_networks_english,Short-Answer-Feedback,['bibtex'] +feradauto/MoralExceptQA,feradauto,"['arxiv.org/abs/2210.01478', 'doi.org/10.48550/arxiv.2210.01478,']" +copenlu/fever_gold_evidence,copenlu,['bibtex'] +BeIR/trec-news-generated-queries,BeIR,[{'title': '{BEIR'}] +persiannlp/parsinlu_entailment,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +IDEA-CCNL/AFQMC,IDEA-CCNL,"['arxiv.org/abs/2209.02970', 'bibtex']" +larrylawl/douban-dushu,larrylawl,[{'title': 'LSICC: A Large Scale Informal Chinese Corpus'}] +qanastek/WMT-16-PubMed,qanastek,['bibtex'] +relbert/nell_relational_similarity,relbert,['bibtex'] +bigbio/ctebmsp,bigbio,"['doi.org/10.1186/s12911-021-01395-z},', 'bibtex']" +voidful/NMSQA,voidful,['arxiv.org/abs/2203.04911'] +HuggingFaceH4/self-instruct-seed,HuggingFaceH4,['arxiv.org/abs/2212.10560'] +jonatli/the_pile_mystic,jonatli,['arxiv.org/abs/2101.00027'] +blinoff/kinopoisk,blinoff,[{'title': 'Research of lexical approach and machine learning methods for sentiment analysis'}] +philschmid/emotion,philschmid,['bibtex'] +pszemraj/SQuALITY-v1.3,pszemraj,['arxiv.org/abs/2205.11465'] +language-and-voice-lab/althingi_asr,language-and-voice-lab,"['doi.org/10.35111/695b-6697},']" +huggan/summer2winter_yosemite,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +bigbio/spl_adr_200db,bigbio,['bibtex'] +bigbio/anat_em,bigbio,[{'title': 'Anatomical entity mention recognition at literature scale'}] +imvladikon/nemo_corpus,imvladikon,"['doi.org/10.1162/tacl\\_a\\_00404},', 'bibtex']" +bigbio/bioinfer,bigbio,[{'title': 'BioInfer: a corpus for information extraction in the biomedical domain'}] +EleutherAI/wikitext_document_level,EleutherAI,['arxiv.org/abs/1609.07843'] +bigbio/scai_disease,bigbio,['bibtex'] +bigbio/mednli,bigbio,"['doi.org/10.13026/c2rs98,']" +lavis-nlp/german_legal_sentences,lavis-nlp,['arxiv.org/abs/2005.13342'] +bigbio/bioscope,bigbio,"[{'title': 'The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes'}]" +bigbio/twadrl,bigbio,['bibtex'] +cfilt/HiNER-original,cfilt,"['arxiv.org/abs/2204.13743', 'doi.org/10.48550/arxiv.2204.13743,']" +demelin/wino_x,demelin,[{'title': 'Wino-X: Multilingual Winograd Schemas for Commonsense Reasoning and Coreference Resolution'}] +relbert/relation_mapping,relbert,[{'title': 'The latent relation mapping engine: Algorithm and experiments'}] +anab/copa-sse,anab,['arxiv.org/abs/2201.06777'] +rbawden/DiaBLa,rbawden,['bibtex'] +graphs-datasets/MUTAG,graphs-datasets,"['doi.org/10.1021/jm00106a046', 'bibtex']" +bigbio/bionlp_shared_task_2009,bigbio,['bibtex'] +bigbio/n2c2_2010,bigbio,"['doi.org/10.1136/amiajnl-2011-000203},', 'bibtex']" +bigbio/bionlp_st_2011_ge,bigbio,['bibtex'] +knkarthick/xsum,knkarthick,['arxiv.org/abs/1808.08745'] +bigbio/bionlp_st_2013_ge,bigbio,['bibtex'] +bigbio/genetag,bigbio,"['doi.org/10.1186/1471-2105-6-S1-S3},', 'bibtex']" +PlanTL-GOB-ES/sts-es,PlanTL-GOB-ES,"[{'title': 'Semeval-2015 task 2: Semantic textual similarity, english, spanish and pilot on interpretability'}]" +bigbio/jnlpba,bigbio,['bibtex'] +bigbio/sciq,bigbio,['bibtex'] +ai4bharat/IndicParaphrase,ai4bharat,"['arxiv.org/abs/2203.05437', {'title': 'IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages'}]" +bigbio/medal,bigbio,[{'title': 'MeDAL\\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining'}] +bigbio/swedish_medical_ner,bigbio,['bibtex'] +BennoKrojer/ImageCoDe,BennoKrojer,['arxiv.org/abs/2203.15867'] +ett,huggingface,"['arxiv.org/abs/2012.07436', 'bibtex']" +bigbio/meddialog,bigbio,"['arxiv.org/abs/2004.03329', 'bibtex']" +CLUTRR/v1,CLUTRR,"['arxiv.org/abs/1908.06177', 'bibtex']" +BeIR/hotpotqa,BeIR,[{'title': '{BEIR'}] +bigbio/mqp,bigbio,['bibtex'] +bigbio/seth_corpus,bigbio,['doi.org/10.1093/bioinformatics/btw234'] +bigbio/scai_chemical,bigbio,['bibtex'] +cjvt/cosimlex,cjvt,['bibtex'] +thesofakillers/SemCor,thesofakillers,['bibtex'] +SLPL/naab,SLPL,"['arxiv.org/abs/2208.13486', 'doi.org/10.48550/arXiv.2208.13486](https://doi.org/10.48550/arXiv.2208.13486)', {'title': 'naab: A ready-to-use plug-and-play corpus for Farsi'}]" +bigbio/meddocan,bigbio,"[{'title': 'Automatic De-identification of Medical Texts in Spanish: the MEDDOCAN Track, Corpus, Guidelines, Methods and Evaluation of Results.'}]" +persiannlp/parsinlu_translation_fa_en,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +bigbio/n2c2_2014_deid,bigbio,"['doi.org/10.1016/j.jbi.2015.06.007},', 'bibtex']" +martinjosifoski/SynthIE,martinjosifoski,"['arxiv.org/abs/2303.04132', {'title': 'Exploiting Asymmetry for Synthetic Training Data Generation: {S'}]" +bigbio/biorelex,bigbio,['bibtex'] +bigbio/pubtator_central,bigbio,"['doi.org/10.1093/nar/gkz389},', {'title': '{PubTator central: automated concept annotation for biomedical full text articles'}]" +bigbio/bionlp_st_2013_gro,bigbio,['bibtex'] +bigbio/ehr_rel,bigbio,[{'title': 'Biomedical Concept Relatedness {--'}] +evaluate/glue-ci,evaluate,[{'title': 'Neural Network Acceptability Judgments'}] +maveriq/DocBank,maveriq,['arxiv.org/abs/2006.01038'] +neulab/tldr,neulab,[{'title': 'DocCoder: Generating Code by Retrieving and Reading Docs'}] +malteos/germeval2017,malteos,[{'title': '{GermEval 2017: Shared Task on Aspect-based Sentiment in Social Media Customer Feedback'}] +bigbio/scicite,bigbio,['bibtex'] +bigbio/tmvar_v1,bigbio,[{'title': 'tmVar: a text mining approach for extracting sequence variants in biomedical literature'}] +Paul/hatecheck-spanish,Paul,['arxiv.org/abs/2206.09917'] +koutch/refactory_programming_data,koutch,[{'title': 'Re-factoring based Program Repair applied to Programming Assignments'}] +biglam/loc_beyond_words,biglam,"['arxiv.org/abs/2005.01583', 'doi.org/10.1145/3340531.3412767},', 'bibtex']" +Shirali/ISSAI_KSC_335RS_v_1_1,Shirali,['bibtex'] +bigbio/citation_gia_test_collection,bigbio,"['doi.org/10.1155/2015/918710}', 'bibtex']" +RCC-MSU/collection3,RCC-MSU,['bibtex'] +IDEA-CCNL/PretrainCorpusDemo,IDEA-CCNL,"['arxiv.org/abs/2209.02970', 'bibtex']" +readerbench/ro-fb-offense,readerbench,[{'title': 'FB-RO-Offense – A Romanian Dataset and Baseline Models for detecting Offensive Language in Facebook Comments'}] +ai4bharat/IndicWikiBio,ai4bharat,"['arxiv.org/abs/2203.05437', {'title': 'IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages'}]" +midas/ldkp3k,midas,[{'title': 'LDKP - A Dataset for Identifying Keyphrases from Long Scientific Documents'}] +Team-PIXEL/rendered-bookcorpus,Team-PIXEL,"['arxiv.org/abs/1506.06724', {'title': 'Language Modelling with Pixels'}]" +stanford-crfm/DSIR-filtered-pile-50M,stanford-crfm,"['arxiv.org/abs/2302.03169', 'bibtex']" +bigbio/mediqa_qa,bigbio,['bibtex'] +bigbio/progene,bigbio,['bibtex'] +bigbio/biology_how_why_corpus,bigbio,['bibtex'] +bigbio/cantemist,bigbio,"[{'title': 'Named Entity Recognition, Concept Normalization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.'}]" +bigbio/bionlp_st_2011_rel,bigbio,['bibtex'] +bigbio/chemdner,bigbio,"['doi.org/10.1186/1758-2946-7-S1-S2},', {'title': 'The CHEMDNER corpus of chemicals and drugs and its annotation principles'}]" +bigbio/bio_sim_verb,bigbio,['bibtex'] +ariesutiono/entailment-bank-v3,ariesutiono,[{'title': 'Explaining Answers with Entailment Trees'}] +bigbio/verspoor_2013,bigbio,[{'title': 'Annotating the biomedical literature for the human variome'}] +bigbio/bio_simlex,bigbio,['bibtex'] +breakend/nllb-multi-domain,breakend,"['arxiv.org/abs/2207.04672', 'bibtex']" +bigbio/genia_ptm_event_corpus,bigbio,['bibtex'] +midas/krapivin,midas,[{'title': 'Large Dataset for Keyphrases Extraction'}] +declare-lab/cicero,declare-lab,"['arxiv.org/abs/2203.13926', {'title': 'CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues'}]" +pinecone/core-2020-05-10-deduplication,pinecone,[{'title': 'Deduplication of Scholarly Documents using Locality Sensitive Hashing and Word Embeddings'}] +imvladikon/paranames,imvladikon,"['arxiv.org/abs/2202.14035', {'title': 'ParaNames: A Massively Multilingual Entity Name Corpus'}]" +kanishka/comps,kanishka,"['arxiv.org/abs/2210.01963', {'title': 'COMPS: Conceptual Minimal Pair Sentences for testing Property Knowledge and Inheritance in Pre-trained Language Models'}]" +bigbio/hprd50,bigbio,[{'title': 'RelEx—Relation extraction using dependency parse trees'}] +phucdev/noisyner,phucdev,"['arxiv.org/abs/2101.09763', 'doi.org/10.15155/1-00-0000-0000-0000-00073L),', 'bibtex']" +cfilt/iwn_wordlists,cfilt,[{'title': 'IndoWordNet'}] +bigbio/multi_xscience,bigbio,"['arxiv.org/abs/2010.14235', 'doi.org/10.48550/arxiv.2010.14235,']" +lmqg/qag_ruquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +projecte-aina/gencata,projecte-aina,['bibtex'] +graphs-datasets/MNIST,graphs-datasets,"['arxiv.org/abs/2003.00982', 'bibtex']" +tner/bionlp2004,tner,['bibtex'] +strombergnlp/twitter_pos,strombergnlp,[{'title': 'Named entity recognition in tweets: an experimental study'}] +batubayk/TR-News,batubayk,['bibtex'] +BeIR/fiqa-generated-queries,BeIR,[{'title': '{BEIR'}] +bigbio/lll,bigbio,['bibtex'] +lmqg/qa_harvesting_from_wikipedia_pseudo,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +strombergnlp/x-stance,strombergnlp,"['arxiv.org/abs/2003.08385', {'title': 'X-stance: A multilingual multi-target dataset for stance detection'}]" +bigbio/psytar,bigbio,"['doi.org/10.1016/j.jbi.2018.12.005},', 'bibtex']" +danwakeem/wikitablequestions-wtq,danwakeem,"['arxiv.org/abs/1508.00305', 'bibtex']" +conceptual_12m,huggingface,"['arxiv.org/abs/2102.08981', {'title': '{Conceptual 12M'}]" +mrm8488/unnatural-instructions-full,mrm8488,['arxiv.org/abs/2212.09689'] +shunk031/jsnli,shunk031,[{'title': '機械翻訳を用いた自然言語推論データセットの多言語化'}] +fabraz/writingPromptAug,fabraz,['arxiv.org/abs/1805.04833'] +yuningm/citesum,yuningm,['arxiv.org/abs/2205.06207'] +orieg/elsevier-oa-cc-by,orieg,"['arxiv.org/abs/2008.00774', 'doi.org/10.48550/arXiv.2008.00774)', {'title': 'Elsevier OA CC-By Corpus'}]" +bigbio/genia_term_corpus,bigbio,['bibtex'] +graphs-datasets/PROTEINS,graphs-datasets,"['doi.org/10.1093/bioinformatics/bti1007},', 'bibtex']" +lmqg/qg_subjqa,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +bigbio/blurb,bigbio,['bibtex'] +djaym7/wiki_dialog,djaym7,[{'title': 'Dialog Inpainting: Turning Documents to Dialogs'}] +gsarti/mt_geneval,gsarti,"['arxiv.org/abs/2211.01355', 'doi.org/10.18653/v1/N18-2003).', 'bibtex']" +bigbio/osiris,bigbio,['doi.org/10.1186/1471-2105-9-84}'] +bigbio/meqsum,bigbio,['bibtex'] +bigbio/n2c2_2009,bigbio,"['doi.org/10.1136/jamia.2010.003947},', 'bibtex']" +silver/mmchat,silver,"['arxiv.org/abs/2108.07154', 'bibtex']" +bigbio/mayosrs,bigbio,[{'title': 'Measures of semantic similarity and relatedness in the biomedical domain'}] +bigbio/minimayosrs,bigbio,[{'title': 'Measures of semantic similarity and relatedness in the biomedical domain'}] +UCL-DARK/ludwig,UCL-DARK,"['doi.org/10.1016/j.procs.2020.04.251)', 'bibtex']" +jmhessel/newyorker_caption_contest,jmhessel,"['arxiv.org/abs/2209.06293', {'title': 'Do Androids Laugh at Electric Sheep? Humor ""Understanding"" Benchmarks from The New Yorker Caption Contest'}]" +GEM/indonlg,GEM,['bibtex'] +huggan/apple2orange,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +bigbio/paramed,bigbio,['bibtex'] +israel/Amharic-News-Text-classification-Dataset,israel,"['arxiv.org/abs/2103.05639', 'doi.org/10.48550/arxiv.2103.05639,']" +BeIR/quora,BeIR,[{'title': '{BEIR'}] +Non-Residual-Prompting/C2Gen,Non-Residual-Prompting,['arxiv.org/abs/1911.03705'] +bigbio/scifact,bigbio,['bibtex'] +jpwahle/machine-paraphrase-dataset,jpwahle,[{'title': 'Identifying Machine-Paraphrased Plagiarism'}] +cjvt/slownet,cjvt,"[{'title': 'sloWNet 3.0: development, extension and cleaning'}]" +tner/tweebank_ner,tner,"['arxiv.org/abs/2201.07281', 'bibtex']" +bigbio/medhop,bigbio,['bibtex'] +BeIR/nq-qrels,BeIR,[{'title': '{BEIR'}] +loubnabnl/humaneval_infilling,loubnabnl,[{'title': 'Efficient Training of Language Models to Fill in the Middle'}] +mxeval/multi-humaneval,mxeval,"['arxiv.org/abs/2210.14868', {'title': 'Multi-lingual Evaluation of Code Generation Models'}]" +EleutherAI/arithmetic,EleutherAI,[{'title': 'Language Models are Few-Shot Learners'}] +AigizK/bashkir-russian-parallel-corpora,AigizK,[{'title': 'Bashkir-Russian parallel corpora'}] +bigbio/tmvar_v2,bigbio,[{'title': 'tmVar 2.0: integrating genomic variant information from literature with dbSNP and ClinVar for precision medicine'}] +pain/AASL,pain,"['arxiv.org/abs/2301.11932', 'doi.org/10.48550/arxiv.2301.11932,']" +dl4phys/top_tagging,dl4phys,"['arxiv.org/abs/1902.09914', 'doi.org/10.5281/zenodo.2603256}']" +ds4sd/icdar2023-doclaynet,ds4sd,"['doi.org/10.1145/3534678.3539043},', {'title': 'DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation'}]" +HIT-TMG/Hansel,HIT-TMG,"['arxiv.org/abs/2207.13005', 'doi.org/10.1145/3539597.3570418},', 'bibtex']" +lcampillos/ctebmsp,lcampillos,[{'title': 'A clinical trials corpus annotated with UMLS© entities to enhance the access to Evidence-Based Medicine'}] +declare-lab/HyperRED,declare-lab,"['arxiv.org/abs/2211.10018', {'title': 'A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach'}]" +shmuhammad/AfriSenti-twitter-sentiment,shmuhammad,[{'title': 'AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages'}] +webis/args_me,webis,['doi.org/10.5281/zenodo.4139439}'] +UKPLab/TexPrax,UKPLab,"['arxiv.org/abs/2208.07846', {'title': 'TexPrax: A Messaging Application for Ethical, Real-time Data Collection and Annotation'}]" +ccdv/WCEP-10,ccdv,"['arxiv.org/abs/2005.10070', 'bibtex']" +bigbio/pico_extraction,bigbio,['bibtex'] +Paul/hatecheck-italian,Paul,['arxiv.org/abs/2206.09917'] +metaeval/implicatures,metaeval,"['arxiv.org/abs/2301.05948', {'title': 'Conversational implicatures in English dialogue: Annotated dataset'}]" +bigbio/mediqa_rqe,bigbio,['bibtex'] +DFKI-SLT/gids,DFKI-SLT,"['arxiv.org/abs/1804.06987', 'bibtex']" +akash418/germeval_2017,akash418,[{'title': '{GermEval 2017: Shared Task on Aspect-based Sentiment in Social Media Customer Feedback'}] +rongzhangibm/NaturalQuestionsV2,rongzhangibm,[{'title': 'Natural Questions: a Benchmark for Question Answering Research'}] +BeIR/webis-touche2020,BeIR,[{'title': '{BEIR'}] +PM-AI/germandpr-beir,PM-AI,['arxiv.org/abs/2104.08663'] +juletxara/visual-spatial-reasoning,juletxara,"['arxiv.org/abs/2205.00363', {'title': 'Visual Spatial Reasoning'}]" +bigbio/euadr,bigbio,"['doi.org/10.1016/j.jbi.2012.04.004},', {'title': 'The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships'}]" +bigbio/evidence_inference,bigbio,['bibtex'] +jpwahle/dblp-discovery-dataset,jpwahle,[{'title': 'D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of Computer Science Research'}] +zpn/zinc20,zpn,"['doi.org/10.1021/acs.jcim.0c00675},', {'doi': '10.1021/acs.jcim.0c00675'}]" +deutsche-telekom/ger-backtrans-paraphrase,deutsche-telekom,['arxiv.org/abs/1907.05791'] +lmqg/qa_squadshifts,lmqg,"['arxiv.org/abs/2004.14444', {'title': 'The effect of natural distribution shift on question answering models'}]" +jonathanli/eurlex,jonathanli,['bibtex'] +Goud/Goud-sum,Goud,[{'title': 'Goud.ma: a News Article Dataset for Summarization in Moroccan Darija'}] +alex-apostolo/filtered-cuad,alex-apostolo,"['arxiv.org/abs/2103.06268', {'title': 'CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review'}]" +McGill-NLP/TopiOCQA,McGill-NLP,"['arxiv.org/abs/2110.00768', 'doi.org/10.1162/tacl\\_a\\_00471},', {'title': 'Topi{OCQA'}]" +Paul/hatecheck-mandarin,Paul,['arxiv.org/abs/2206.09917'] +indonesian-nlp/mc4-id,indonesian-nlp,"['arxiv.org/abs/1910.10683', 'bibtex']" +arka0821/multi_document_summarization,arka0821,"['arxiv.org/abs/2010.14235', {'title': 'Multi-Document: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles'}]" +BeIR/trec-covid-qrels,BeIR,[{'title': '{BEIR'}] +silver/lccc,silver,"['arxiv.org/abs/2008.03946', {'title': 'A Large-Scale Chinese Short-Text Conversation Dataset'}]" +persiannlp/parsinlu_sentiment,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +DFKI-SLT/knowledge_net,DFKI-SLT,['bibtex'] +cfilt/HiNER-collapsed,cfilt,"['arxiv.org/abs/2204.13743', 'doi.org/10.48550/arxiv.2204.13743,']" +bigbio/cas,bigbio,[{'title': '{CAS'}] +lapix/CCAgT,lapix,"['doi.org/10.2139/ssrn.4126881)', {'doi': '10.2139/ssrn.4126881'}]" +narad/ravdess,narad,['doi.org/10.1371/journal.pone.0196391.'] +BeIR/hotpotqa-qrels,BeIR,[{'title': '{BEIR'}] +bigbio/pubhealth,bigbio,[{'title': 'Explainable automated fact-checking for public health claims'}] +intfloat/query2doc_msmarco,intfloat,[{'title': 'Query2doc: Query Expansion with Large Language Models'}] +svakulenk0/qrecc,svakulenk0,[{'title': 'Open-Domain Question Answering Goes Conversational via Question Rewriting'}] +DFKI-SLT/fabner,DFKI-SLT,"['doi.org/10.1007/s10845-021-01807-x},', 'bibtex']" +nedjmaou/MLMA_hate_speech,nedjmaou,['bibtex'] +Leyo/ActivityNet_Captions,Leyo,"['arxiv.org/abs/1705.00754', {'title': 'Dense-Captioning Events in Videos'}]" +navanchauhan/decimer-data-mini,navanchauhan,['doi.org/10.26434/chemrxiv.14479287.v1'] +SLPL/naab-raw,SLPL,"['arxiv.org/abs/2208.13486', 'doi.org/10.48550/arXiv.2208.13486](https://doi.org/10.48550/arXiv.2208.13486).', {'title': 'naab: A ready-to-use plug-and-play corpus for Farsi'}]" +DDSC/dagw_reddit_filtered_v1.0.0,DDSC,['arxiv.org/abs/2112.11446'] +mweiss/fashion_mnist_corrupted,mweiss,"['arxiv.org/abs/1906.02337', {'title': 'Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning'}]" +Serverless/dev_mode-wtq,Serverless,"['arxiv.org/abs/1508.00305', 'bibtex']" +shahules786/prosocial-confessions,shahules786,[{'title': 'ProsocialDialog: A Prosocial Backbone for Conversational Agents'}] +PiC/phrase_retrieval,PiC,[{'title': 'PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search'}] +lcampillos/CLARA-MeD,lcampillos,['doi.org/10.20350/digitalCSIC/14644](https://doi.org/10.20350/digitalCSIC/14644)'] +juletxara/tydiqa_xtreme,juletxara,"['arxiv.org/abs/2003.11080', {'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}]" +neulab/mconala,neulab,[{'title': 'MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages'}] +pile-of-law/eoir_privacy,pile-of-law,['arxiv.org/abs/2207.00220'] +threite/Bundestag-v2,threite,['doi.org/10.7910/DVN/L4OAKN'] +antoniomenezes/go_emotions_ptbr,antoniomenezes,"['arxiv.org/abs/2005.00547', 'bibtex']" +biglam/old_bailey_proceedings,biglam,['bibtex'] +LHF/escorpius,LHF,"['arxiv.org/abs/2206.15147', 'bibtex']" +bigbio/mlee,bigbio,[{'title': 'Event extraction across multiple levels of biological organization'}] +strombergnlp/broad_twitter_corpus,strombergnlp,[{'title': 'Broad twitter corpus: A diverse named entity recognition resource'}] +liyucheng/chinese_metaphor_dataset,liyucheng,['bibtex'] +cgarciae/cartoonset,cgarciae,"['arxiv.org/abs/1711.05139', 'bibtex']" +jason9693/APEACH,jason9693,"['arxiv.org/abs/2202.12459', {'title': 'APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets'}]" +bigbio/nlm_wsd,bigbio,['bibtex'] +bigbio/pharmaconer,bigbio,['bibtex'] +tner/btc,tner,['bibtex'] +tushar117/xalign,tushar117,"['arxiv.org/abs/2202.00291', {'title': 'XAlign: Cross-lingual Fact-to-Text Alignment and Generation for Low-Resource Languages'}]" +conglu/vd4rl,conglu,['arxiv.org/abs/2206.04779'] +copenlu/sufficient_facts,copenlu,"['doi.org/10.1162/tacl\\_a\\_00486},', 'bibtex']" +bigbio/genia_relation_corpus,bigbio,['bibtex'] +projecte-aina/tecla,projecte-aina,['doi.org/10.5281/zenodo.7334110])'] +Roh/ryanspeech,Roh,"['arxiv.org/abs/2106.08468', {'title': 'RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis'}]" +matejklemen/vuamc,matejklemen,['bibtex'] +irds/trec-robust04,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +BeIR/climate-fever,BeIR,[{'title': '{BEIR'}] +zjunlp/KGEditor,zjunlp,"['arxiv.org/abs/2301.10405', 'doi.org/10.48550/arXiv.2301.10405},', 'bibtex']" +GEM/squality,GEM,"['arxiv.org/abs/2205.11465', {'title': 'S{Q'}]" +midas/semeval2010,midas,['bibtex'] +midas/duc2001,midas,['bibtex'] +DFKI-SLT/cross_re,DFKI-SLT,"['arxiv.org/abs/2210.09345', 'bibtex']" +din0s/msmarco-nlgen,din0s,"['arxiv.org/abs/1611.09268', {'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}]" +iluvvatar/NEREL,iluvvatar,"['doi.org/10.48550/arXiv.2108.13112)', {'title': 'NEREL: A Russian Dataset with Nested Named Entities, Relations and Events'}]" +severo/glue,severo,[{'title': 'Neural Network Acceptability Judgments'}] +lmqg/qag_esquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +DFKI-SLT/SemEval2018_Task7,DFKI-SLT,['bibtex'] +abdouaziiz/fquad,abdouaziiz,['arxiv.org/abs/2002.06071'] +gigant/horse2zebra,gigant,"['arxiv.org/abs/1703.10593', {'title': 'Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks'}]" +PiC/phrase_sense_disambiguation,PiC,[{'title': 'PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search'}] +bigbio/n2c2_2018_track1,bigbio,"['doi.org/10.1093/jamia/ocz163},', 'bibtex']" +kevinjesse/ManyTypes4TypeScript,kevinjesse,['doi.org/10.5281/zenodo.6387001](https://doi.org/10.5281/zenodo.6387001)'] +IIC/spanish_biomedical_crawled_corpus,IIC,['arxiv.org/abs/2109.07765'] +BeIR/bioasq-generated-queries,BeIR,[{'title': '{BEIR'}] +wardenga/lsoie,wardenga,['arxiv.org/abs/2101.11177'] +readerbench/news-ro-offense,readerbench,['doi.org/10.37789/rochi.2022.1.1.12}'] +poojaruhal/Code-comment-classification,poojaruhal,"['doi.org/10.1016/j.jss.2021.111047', {'title': 'How to identify class comment types? A multi-language approach for class comment classification'}]" +rahular/itihasa,rahular,['bibtex'] +lmqg/qag_koquad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +ConvLab/sgd1,ConvLab,[{'title': 'SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems'}] +language-and-voice-lab/malromur_asr,language-and-voice-lab,[{'title': 'Málrómur: A manually verified corpus of recorded Icelandic speech'}] +giulio98/xlcost-single-prompt,giulio98,['arxiv.org/abs/2206.08474'] +DFKI-SLT/brat,DFKI-SLT,[{'title': 'An argument-annotated corpus of scientific publications'}] +BeIR/dbpedia-entity,BeIR,[{'title': '{BEIR'}] +lmqg/qag_dequad,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +PlanTL-GOB-ES/MLDoc,PlanTL-GOB-ES,['bibtex'] +IDEA-CCNL/laion2B-multi-chinese-subset,IDEA-CCNL,"['arxiv.org/abs/2209.02970', 'bibtex']" +stjiris/IRIS_sts,stjiris,['bibtex'] +sagteam/author_profiling,sagteam,[{'title': 'СРАВНЕНИЕ ТОЧНОСТЕЙ МЕТОДОВ НА ОСНОВЕ ЯЗЫКОВЫХ И ГРАФОВЫХ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ ДЛЯ ОПРЕДЕЛЕНИЯ ПРИЗНАКОВ АВТОРСКОГО ПРОФИЛЯ ПО ТЕКСТАМ НА РУССКОМ ЯЗЫКЕ'}] +bigbio/n2c2_2006_deid,bigbio,"['doi.org/10.1197/jamia.M2444},', 'bibtex']" +bigbio/msh_wsd,bigbio,[{'title': 'Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation'}] +BeIR/nq-generated-queries,BeIR,[{'title': '{BEIR'}] +kakaobrain/coyo-labeled-300m,kakaobrain,['arxiv.org/abs/2010.11929'] +sustcsenlp/bn_emotion_speech_corpus,sustcsenlp,['doi.org/10.1371/journal.pone.0250173)'] +bigbio/bioasq_task_c_2017,bigbio,[{'title': 'Results of the fifth edition of the {B'}] +AnanthZeke/naamapadam,AnanthZeke,['arxiv.org/abs/2212.10168'] +irds/mmarco_v2_it_dev,irds,[{'title': '{mMARCO'}] +BeIR/scifact-generated-queries,BeIR,[{'title': '{BEIR'}] +polinaeterna/lila_camera_traps,polinaeterna,"['doi.org/10.1007/978-3-030-01270-0\\_28},', 'bibtex']" +GEM/TaTA,GEM,['arxiv.org/abs/2211.00142'] +Basvoju/SemEval2018Task7,Basvoju,['bibtex'] +bigbio/n2c2_2006_smokers,bigbio,"['doi.org/10.1197/jamia.M2408},', 'bibtex']" +cahya/fleurs,cahya,"['arxiv.org/abs/2205.12446', {'title': 'FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech'}]" +biglam/illustrated_ads,biglam,['doi.org/10.5281/zenodo.5838410](https://doi.org/10.5281/zenodo.5838410)'] +language-and-voice-lab/samromur_children,language-and-voice-lab,"['doi.org/10.35111/frrj-qd60},']" +mediabiasgroup/mbib-base,mediabiasgroup,[{'title': 'Introducing MBIB - the first Media Bias Identification Benchmark Task and Dataset Collection'}] +MultiCoNER/multiconer_v2,MultiCoNER,[{'title': '{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)'}] +BeIR/scidocs-generated-queries,BeIR,[{'title': '{BEIR'}] +severo/mnist,severo,[{'title': 'MNIST handwritten digit database'}] +webimmunization/COVID-19-vaccine-attitude-tweets,webimmunization,"['doi.org/10.1145/3472720.3483619)', {'title': 'Be Careful Who You Follow: The Impact of the Initial Set of Friends on COVID-19 Vaccine Tweets'}]" +tner/ttc_dummy,tner,['bibtex'] +BeIR/webis-touche2020-qrels,BeIR,[{'title': '{BEIR'}] +biglam/unsilence_voc,biglam,"['arxiv.org/abs/2210.02194', 'doi.org/10.5281/zenodo.6958524']" +toloka/CrowdSpeech,toloka,['bibtex'] +relbert/scientific_and_creative_analogy,relbert,"['arxiv.org/abs/2211.15268', {'title': 'Scientific and Creative Analogies in Pretrained Language Models'}]" +neulab/odex,neulab,[{'title': 'Execution-Based Evaluation for Open-Domain Code Generation'}] +HuggingFaceM4/something_something_v2,HuggingFaceM4,"['arxiv.org/abs/1706.04261', {'title': 'The"" something something"" video database for learning and evaluating visual common sense'}]" +haritzpuerto/MetaQA_Agents_Predictions,haritzpuerto,"['arxiv.org/abs/2112.01922', {'title': 'MetaQA: Combining Expert Agents for Multi-Skill Question Answering'}]" +bigbio/n2c2_2011,bigbio,"['doi.org/10.1136/amiajnl-2011-000784},', 'bibtex']" +bigbio/n2c2_2008,bigbio,"['doi.org/10.1197/jamia.M3115},', 'bibtex']" +bigbio/mediqa_nli,bigbio,"['doi.org/10.13026/gtv4-g455,']" +nlphuji/utk_faces,nlphuji,"['arxiv.org/abs/1702.08423', {'title': 'Age Progression/Regression by Conditional Adversarial Autoencoder'}]" +armanc/ScienceQA,armanc,['bibtex'] +gabrielrstan/CORAA-v1.1,gabrielrstan,['arxiv.org/abs/2110.15731'] +khaclinh/pp4av,khaclinh,[{'title': 'PP4AV: A benchmarking Dataset for Privacy-preserving Autonomous Driving'}] +vishal-burman/c4-faqs,vishal-burman,"['arxiv.org/abs/1910.10683', 'bibtex']" +khaclinh/testdata,khaclinh,[{'title': 'PP4AV: A benchmarking Dataset for Privacy-preserving Autonomous Driving'}] +Paul/hatecheck-portuguese,Paul,['arxiv.org/abs/2206.09917'] +icelab/ntrs_meta,icelab,"['doi.org/10.1109/BigData52589.2021.9671853"",...},...]']" +djstrong/oscar-small,djstrong,"['arxiv.org/abs/2010.14571', 'bibtex']" +midas/ldkp10k,midas,[{'title': 'LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents'}] +albertvillanova/tmp-mention,albertvillanova,['arxiv.org/abs/2012.03411'] +yhavinga/cnn_dailymail_dutch,yhavinga,['bibtex'] +domenicrosati/TruthfulQA,domenicrosati,['arxiv.org/abs/2109.07958'] +huggan/monet2photo,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +graphs-datasets/AIDS,graphs-datasets,[{'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}] +ENM/dataset-prueba,ENM,"['doi.org/10.18653/v1/n18-2097},', 'bibtex']" +bigbio/ntcir_13_medweb,bigbio,['bibtex'] +webis/conclugen,webis,"['doi.org/10.18653/v1/2021.findings-acl.306},', 'bibtex']" +lmqg/qg_frquad_dummy,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +embedding-data/WikiAnswers,embedding-data,"['doi.org/10.1145/2623330.2623677)', 'bibtex']" +taln-ls2n/kpbiomed,taln-ls2n,['arxiv.org/abs/2211.12124'] +ruslan/bioleaflets-biomedical-ner,ruslan,['bibtex'] +strombergnlp/nordic_langid,strombergnlp,['bibtex'] +sjyhne/mapai_dataset,sjyhne,['bibtex'] +collectivat/una-fraza-al-diya,collectivat,['arxiv.org/abs/2205.15599'] +bigbio/pcr,bigbio,[{'title': 'A corpus for plant-chemical relationships in the biomedical domain'}] +cjvt/slo_thesaurus,cjvt,[{'title': 'From translation equivalents to synonyms: creation of a Slovene thesaurus using word co-occurrence network analysis'}] +roman_urdu_hate_speech,huggingface,[{'title': 'Hate-speech and offensive language detection in roman Urdu'}] +pensieves/mimicause,pensieves,"['arxiv.org/abs/2110.07090', {'title': 'MIMICause: Representation and automatic extraction of causal relation types from clinical notes'}]" +projecte-aina/catalan_general_crawling,projecte-aina,"['arxiv.org/abs/2107.07903', 'bibtex']" +sayakpaul/instructpix2pix-demo,sayakpaul,['arxiv.org/abs/2211.09800'] +emozilla/soda_synthetic_dialogue,emozilla,['bibtex'] +Fhrozen/AudioSet2K22,Fhrozen,[{'title': 'Audio Set: An ontology and human-labeled dataset for audio events'}] +rifkiaputri/idk-mrc,rifkiaputri,['arxiv.org/abs/2210.13778'] +launch/gov_report_qs,launch,['bibtex'] +VietAI/vi_pubmed,VietAI,['arxiv.org/abs/2210.05610'] +lmvasque/hablacultura,lmvasque,['bibtex'] +colbertv2/lotte,colbertv2,['arxiv.org/abs/2112.01488'] +nikitam/ACES,nikitam,"['arxiv.org/abs/2210.15615', 'bibtex']" +biglam/gallica_literary_fictions,biglam,['doi.org/10.5281/zenodo.4660197'] +microsoft/CLUES,microsoft,[{'title': 'Few-Shot Learning Evaluation in Natural Language Understanding'}] +ruanchaves/hatebr,ruanchaves,[{'title': 'HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection'}] +eliolio/docvqa,eliolio,['arxiv.org/abs/2007.00398'] +drt/kqa_pro,drt,"['arxiv.org/abs/2007.03875', {'title': '{KQA P'}]" +zpn/bace_regression,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +cbasu/Med-EASi,cbasu,[{'title': 'Med-EASi: Finely Annotated Dataset and Models for Controllable Simplification of Medical Texts'}] +jeanlee/kmhas_korean_hate_speech,jeanlee,"['arxiv.org/abs/2208.10684', 'bibtex']" +biwi_kinect_head_pose,huggingface,['bibtex'] +sartajekram/BanglaRQA,sartajekram,['bibtex'] +persiannlp/parsinlu_query_paraphrasing,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +Filippo/osdg_cd,Filippo,['doi.org/10.5281/zenodo.6393942)'] +amphora/korfin-asc,amphora,"['arxiv.org/abs/2301.03136', {'title': 'Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance'}]" +research-backup/semeval2012_relational_similarity_v2,research-backup,['bibtex'] +jet-universe/jetclass,jet-universe,"['arxiv.org/abs/2202.03772', 'bibtex']" +strombergnlp/bornholmsk,strombergnlp,['bibtex'] +MicPie/unpredictable_en-wikipedia-org,MicPie,['arxiv.org/abs/2208.01009'] +biglam/cultural_heritage_metadata_accuracy,biglam,"['doi.org/10.6084/m9.figshare.13359104.v1](https://doi.org/10.6084/m9.figshare.13359104.v1)', 'bibtex']" +irds/disks45_nocr_trec-robust-2004,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +midas/citeulike180,midas,['bibtex'] +kudo-research/mustc-en-es-text-only,kudo-research,"['doi.org/10.1016/j.csl.2020.101155},', {'title': 'MuST-C: A multilingual corpus for end-to-end speech translation'}]" +strombergnlp/dkstance,strombergnlp,['bibtex'] +gsarti/magpie,gsarti,['bibtex'] +uoe-nlp/multi3-nlu,uoe-nlp,['arxiv.org/abs/2212.10455'] +huggan/horse2zebra,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +Ruth-Ann/jampatoisnli,Ruth-Ann,"['arxiv.org/abs/2212.03419', 'doi.org/10.48550/arxiv.2212.03419,']" +colbertv2/lotte_passages,colbertv2,['arxiv.org/abs/2112.01488'] +sagnikrayc/quasar,sagnikrayc,['arxiv.org/abs/1707.03904'] +strombergnlp/bornholmsk_parallel,strombergnlp,['bibtex'] +Paul/hatecheck-german,Paul,['arxiv.org/abs/2206.09917'] +albertvillanova/mtet,albertvillanova,['bibtex'] +acul3/KoPI-CC,acul3,['bibtex'] +Jiangjie/ekar_english,Jiangjie,['bibtex'] +midas/www,midas,['bibtex'] +strombergnlp/named_timexes,strombergnlp,['bibtex'] +yhavinga/xsum_dutch,yhavinga,"[{'title': ""Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization""}]" +mxeval/mathqa-x,mxeval,"['arxiv.org/abs/2210.14868', {'title': 'Multi-lingual Evaluation of Code Generation Models'}]" +strombergnlp/ara-stance,strombergnlp,"['arxiv.org/abs/2104.13559', 'bibtex']" +osyvokon/wiki-edits-uk,osyvokon,['bibtex'] +sxu/CANLI,sxu,['bibtex'] +Fhrozen/tau_srir_db,Fhrozen,['doi.org/10.5281/zenodo.5476980)'] +biglam/european_art,biglam,"['arxiv.org/abs/2211.01226', 'doi.org/10.5281/zenodo.6984525']" +mbartolo/synQA,mbartolo,"['arxiv.org/abs/1606.05250', 'bibtex']" +dennlinger/wiki-paragraphs,dennlinger,"['arxiv.org/abs/2012.03619', 'doi.org/10.1145/3462757.3466085},', 'bibtex']" +KGraph/FB15k-237,KGraph,[{'title': 'Modeling relational data with graph convolutional networks'}] +midas/kdd,midas,['bibtex'] +biu-nlp/alsqa,biu-nlp,"['arxiv.org/abs/2210.12673', 'doi.org/10.48550/arxiv.2210.12673,']" +demelin/understanding_fables,demelin,"['arxiv.org/abs/2206.04615', {'title': 'Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models'}]" +usc-isi/WikiConvert,usc-isi,['bibtex'] +midas/cstr,midas,"['doi.org/10.1145/313238.313437},', 'bibtex']" +lm4pt/bpsad,lm4pt,['bibtex'] +michelecafagna26/hl,michelecafagna26,[{'title': 'HL Dataset: Grounding High-Level Linguistic Concepts in Vision'}] +irds/mmarco_v2_it,irds,[{'title': '{mMARCO'}] +lmqg/qa_squad,lmqg,['bibtex'] +lmqg/qg_tweetqa,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +dominguesm/brwac,dominguesm,[{'title': 'The brwac corpus: A new open resource for brazilian portuguese'}] +iluvvatar/RuREBus,iluvvatar,['bibtex'] +ConvLab/sgd,ConvLab,[{'title': 'Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset'}] +ConvLab/tm3,ConvLab,['bibtex'] +Paul/hatecheck-arabic,Paul,['arxiv.org/abs/2206.09917'] +mvarma/medwiki,mvarma,"['arxiv.org/abs/2110.08228', 'bibtex']" +surrey-nlp/PLOD-filtered,surrey-nlp,['arxiv.org/abs/2204.12061'] +pszemraj/multi_fc,pszemraj,"['arxiv.org/abs/1909.03242', 'bibtex']" +abhishek/hagrid,abhishek,['arxiv.org/abs/2206.08219'] +nguyenvulebinh/libris_clean_100,nguyenvulebinh,[{'title': 'Librispeech: an ASR corpus based on public domain audio books'}] +VIMA/VIMA-Data,VIMA,"['arxiv.org/abs/2210.03094', {'title': 'VIMA: General Robot Manipulation with Multimodal Prompts'}]" +projecte-aina/teca,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4519349)', 'bibtex']" +ulysses-camara/ulysses-ner-br,ulysses-camara,"['doi.org/10.1007/978-3-030-98305-5_1}', {'title': 'UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition'}]" +patrickvonplaten/librispeech_asr_self_contained,patrickvonplaten,[{'title': 'Librispeech: an ASR corpus based on public domain audio books'}] +GBaker/MedQA-USMLE-4-options-hf-cosine-similarity,GBaker,[{'title': 'What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams'}] +wise-east/spolin,wise-east,"['arxiv.org/abs/2004.09544', {'title': 'Grounding Conversations with Improvised Dialogues'}]" +lmvasque/kwiziq,lmvasque,['bibtex'] +slone/myv_ru_2022,slone,['arxiv.org/abs/2209.09368'] +BeIR/climate-fever-qrels,BeIR,[{'title': '{BEIR'}] +ai4bharat/Aksharantar,ai4bharat,['arxiv.org/abs/2205.03018'] +rajeshradhakrishnan/malayalam_wiki,rajeshradhakrishnan,[{'title': 'Common Crawl - Malayalam'}] +collectivat/salom-ladino-articles,collectivat,['arxiv.org/abs/2205.15599'] +juancopi81/mutopia_guitar_dataset,juancopi81,['arxiv.org/abs/2008.06048'] +ConvLab/multiwoz21,ConvLab,['bibtex'] +McGill-NLP/feedbackQA,McGill-NLP,['arxiv.org/abs/2204.03025'] +ruanchaves/bt11,ruanchaves,[{'title': 'Improving the tokenisation of identifier names'}] +keshan/wit-dataset,keshan,[{'title': 'WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning'}] +ruanchaves/test_stanford,ruanchaves,['arxiv.org/abs/1501.03210'] +facebook/panda,facebook,['arxiv.org/abs/2205.12586'] +MicPie/unpredictable_studystack-com,MicPie,['arxiv.org/abs/2208.01009'] +darrow-ai/USClassActionOutcomes_ExpertsAnnotations,darrow-ai,['arxiv.org/abs/2211.00582'] +strombergnlp/ipm_nel,strombergnlp,[{'title': 'Analysis of named entity recognition and linking for tweets'}] +yhavinga/squad_v2_dutch,yhavinga,['bibtex'] +sdadas/sick_pl,sdadas,['bibtex'] +jpwahle/etpc,jpwahle,['bibtex'] +projecte-aina/vilaquad,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4562337', 'bibtex']" +tharindu/SOLID,tharindu,['bibtex'] +biglam/atypical_animacy,biglam,"['arxiv.org/abs/2005.11140', 'bibtex']" +HuggingFaceM4/howto100m,HuggingFaceM4,[{'title': 'How{T'}] +MicPie/unpredictable_wkdu-org,MicPie,['arxiv.org/abs/2208.01009'] +launch/reddit_qg,launch,['bibtex'] +ruanchaves/dev_stanford,ruanchaves,[{'title': 'Segmenting hashtags and analyzing their grammatical structure'}] +ConvLab/camrest,ConvLab,['bibtex'] +venelin/inferes,venelin,['arxiv.org/abs/2210.03068'] +strombergnlp/ans-stance,strombergnlp,"['arxiv.org/abs/2005.10410', 'bibtex']" +strombergnlp/twitter_pos_vcb,strombergnlp,[{'title': 'Twitter part-of-speech tagging for all: Overcoming sparse and noisy data'}] +graphs-datasets/twitch_egos,graphs-datasets,[{'title': '{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs'}] +tarteel-ai/quranqa,tarteel-ai,"['doi.org/10.1145/3400396},', 'bibtex']" +cjvt/sloie,cjvt,"['doi.org/10.1016/j.knosys.2021.107606},', {'title': 'MICE: Mining Idioms with Contextual Embeddings'}]" +projecte-aina/catalan_government_crawling,projecte-aina,"['arxiv.org/abs/2107.07903', 'bibtex']" +LeandraFichtel/KAMEL,LeandraFichtel,[{'title': 'KAMEL: Knowledge Analysis with Multitoken Entities in Language Models'}] +strombergnlp/polstance,strombergnlp,[{'title': 'Political Stance in Danish'}] +ConvLab/tm1,ConvLab,[{'title': 'Taskmaster-1:Toward a Realistic and Diverse Dialog Dataset'}] +ipipan/nkjp1m,ipipan,"['doi.org/10.31286/JP.101.2.5"",', 'bibtex']" +nateraw/espeni-2,nateraw,['doi.org/10.5281/zenodo.6606485}'] +sagot/lefff_morpho,sagot,['bibtex'] +ruanchaves/stan_large,ruanchaves,['bibtex'] +ConvLab/woz,ConvLab,['bibtex'] +khalidalt/SANAD,khalidalt,[{'title': 'Sanad: Single-label arabic news articles dataset for automatic text categorization'}] +ruanchaves/lynx,ruanchaves,[{'title': 'Recognizing words from source code identifiers using speech recognition techniques'}] +darrow-ai/USClassActions,darrow-ai,['arxiv.org/abs/2211.00582'] +chenghao/cuad_qa,chenghao,"['arxiv.org/abs/2103.06268', {'title': 'CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review'}]" +projecte-aina/sts-ca,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4529183)', 'bibtex']" +Gabriel/citesum_swe,Gabriel,['arxiv.org/abs/2205.06207'] +irds/mr-tydi_ru,irds,[{'title': '{Mr. TyDi'}] +ruanchaves/jhotdraw,ruanchaves,[{'title': 'Recognizing words from source code identifiers using speech recognition techniques'}] +ruanchaves/loyola,ruanchaves,[{'title': 'An empirical study of identifier splitting techniques'}] +MariaIsabel/FR_NFR_Spanish_requirements_classification,MariaIsabel,['doi.org/10.5281/zenodo.6556541'] +ruanchaves/hashset_distant_sampled,ruanchaves,"['arxiv.org/abs/2201.06741', {'title': 'HashSet--A Dataset For Hashtag Segmentation'}]" +mrm8488/unnatural-instructions-core,mrm8488,['arxiv.org/abs/2212.09689'] +tomekkorbak/pile-pii-scrubadub,tomekkorbak,['arxiv.org/abs/2101.00027'] +totuta/youtube_subs_howto100M,totuta,"['arxiv.org/abs/1906.03327', {'title': 'How{T'}]" +qwedsacf/competition_math,qwedsacf,[{'title': 'Measuring Mathematical Problem Solving With the MATH Dataset'}] +ConvLab/tm2,ConvLab,[{'title': 'Taskmaster-1:Toward a Realistic and Diverse Dialog Dataset'}] +sinhala-nlp/SemiSOLD,sinhala-nlp,[{'title': 'SOLD: Sinhala Offensive Language Dataset'}] +ruanchaves/snap,ruanchaves,[{'title': 'Segmenting hashtags using automatically created training data'}] +civility-lab/incivility-arizona-daily-star-comments,civility-lab,"['doi.org/10.1111/jcom.12104).', 'bibtex']" +ruanchaves/binkley,ruanchaves,['bibtex'] +sdadas/ppc,sdadas,['bibtex'] +projecte-aina/catalan_textual_corpus,projecte-aina,"['arxiv.org/abs/2107.07903', 'bibtex']" +yoshitomo-matsubara/srsd-feynman_hard,yoshitomo-matsubara,"['arxiv.org/abs/2206.10540', {'title': 'Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery'}]" +strombergnlp/rustance,strombergnlp,"['arxiv.org/abs/1809.01574', {'title': 'Stance prediction for russian: data and analysis'}]" +ruanchaves/hashset_distant,ruanchaves,"['arxiv.org/abs/2201.06741', {'title': 'HashSet--A Dataset For Hashtag Segmentation'}]" +strombergnlp/danfever,strombergnlp,['bibtex'] +elkarhizketak,huggingface,['bibtex'] +lmqg/qg_annotation,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +lmvasque/coh-metrix-esp,lmvasque,['bibtex'] +yoshitomo-matsubara/srsd-feynman_easy,yoshitomo-matsubara,"['arxiv.org/abs/2206.10540', {'title': 'Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery'}]" +TUMLegalTech/echr_rational,TUMLegalTech,[{'title': 'Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts'}] +strombergnlp/zulu_stance,strombergnlp,"['arxiv.org/abs/2205.03153', {'title': 'Bridging the Domain Gap for Stance Detection for the Zulu language'}]" +w11wo/imdb-javanese,w11wo,[{'title': 'Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures'}] +janck/bigscience-lama,janck,[{'title': 'Language Models as Knowledge Bases?'}] +sdadas/8tags,sdadas,['bibtex'] +PolyAI/evi,PolyAI,"['arxiv.org/abs/2204.13496', 'bibtex']" +tartuNLP/EstCOPA,tartuNLP,"['doi.org/10.22364/bjmc.2022.10.3.19},', {'title': 'Estonian Language Understanding: a Case Study on the COPA Task'}]" +KTH/hungarian-single-speaker-tts,KTH,"['arxiv.org/abs/1903.11269', {'title': 'CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages'}]" +research-backup/semeval2012_relational_similarity_v6,research-backup,['bibtex'] +biglam/berlin_state_library_ocr,biglam,['doi.org/10.5281/zenodo.2702544)'] +vadis/sv-ident,vadis,['bibtex'] +BeIR/trec-covid-generated-queries,BeIR,[{'title': '{BEIR'}] +morteza/cogtext,morteza,['arxiv.org/abs/2203.11016'] +strombergnlp/itu_faroese_danish,strombergnlp,['arxiv.org/abs/2206.08727'] +cjvt/slo_collocations,cjvt,[{'title': 'Collocations dictionary of modern Slovene'}] +ruanchaves/boun,ruanchaves,[{'title': 'Segmenting hashtags and analyzing their grammatical structure'}] +codesue/kelly,codesue,"['doi.org/10.1007/s10579-013-9251-2},', {'doi': '10.1007/s10579-013-9251-2'}]" +ruanchaves/nru_hse,ruanchaves,"['arxiv.org/abs/1911.03270', {'title': 'Char-RNN and Active Learning for Hashtag Segmentation'}]" +pauli31/czech-subjectivity-dataset,pauli31,"['arxiv.org/abs/2204.13915', {'title': 'Czech Dataset for Cross-lingual Subjectivity Classification'}]" +DFKI-SLT/science_ie,DFKI-SLT,"['arxiv.org/abs/1704.02853', 'bibtex']" +statworx/swiss-dialects,statworx,['doi.org/10.13092/lo.98.5947'] +launch/ampere,launch,['bibtex'] +embedding-data/PAQ_pairs,embedding-data,[{'title': 'PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them'}] +GrainsPolito/BBBicycles,GrainsPolito,[{'title': 'Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification'}] +Paul/hatecheck-dutch,Paul,['arxiv.org/abs/2206.09917'] +income/nfcorpus-top-20-gen-queries,income,[{'title': '{BEIR'}] +LRGB/peptides-functional,LRGB,[{'title': 'Long Range Graph Benchmark'}] +wanyu/IteraTeR_full_doc,wanyu,['arxiv.org/abs/2203.03802'] +Axel578/mydt,Axel578,"['arxiv.org/abs/1911.12237', 'bibtex']" +batterydata/paper-abstracts,batterydata,[{'title': 'BatteryBERT: A Pretrained Language Model for Battery Database Enhancement'}] +MFreidank/glenda,MFreidank,['bibtex'] +persiannlp/parsinlu_reading_comprehension,persiannlp,"['arxiv.org/abs/2012.06154', {'title': 'ParsiNLU: A Suite of Language Understanding Challenges for Persian'}]" +mxeval/mbxp,mxeval,"['arxiv.org/abs/2210.14868', {'title': 'Multi-lingual Evaluation of Code Generation Models'}]" +MicPie/unpredictable_phonearena-com,MicPie,['arxiv.org/abs/2208.01009'] +surrey-nlp/PLOD-unfiltered,surrey-nlp,['arxiv.org/abs/2204.12061'] +MicPie/unpredictable_cluster05,MicPie,['arxiv.org/abs/2208.01009'] +n-iv/sq,n-iv,"['doi.org/10.57967/hf/0324,']" +income/scidocs-top-20-gen-queries,income,[{'title': '{BEIR'}] +neuclir/hc4,neuclir,"['arxiv.org/abs/2201.09992', 'bibtex']" +MicPie/unpredictable_rated-low,MicPie,['arxiv.org/abs/2208.01009'] +sasha/australian_sea_slugs,sasha,['doi.org/10.15468/gtoiks'] +LRGB/voc_superpixels_edge_wt_coord_feat_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +income/cqadupstack-physics-top-20-gen-queries,income,[{'title': '{BEIR'}] +biu-nlp/CoreSearch,biu-nlp,"['arxiv.org/abs/2210.12654', 'bibtex']" +relbert/nell,relbert,['bibtex'] +Livingwithmachines/MapReader_Data_SIGSPATIAL_2022,Livingwithmachines,"['doi.org/10.5281/zenodo.7147906', 'bibtex']" +Twitter/SignedGraphs,Twitter,"['arxiv.org/abs/2201.11675', {'title': 'Learning Stance Embeddings from Signed Social Graphs'}]" +HuggingFaceM4/ActivitiyNet_Captions,HuggingFaceM4,"['arxiv.org/abs/1705.00754', {'title': 'Dense-Captioning Events in Videos'}]" +csebuetnlp/CrossSum,csebuetnlp,"['arxiv.org/abs/2112.08804', 'bibtex']" +wanyu/IteraTeR_human_doc,wanyu,['arxiv.org/abs/2203.03802'] +RGBD-SOD/rgbdsod_datasets,RGBD-SOD,[{'title': 'RGB-D saliency detection via cascaded mutual information minimization'}] +svnfs/depth-of-field,svnfs,[{'title': 'DoF: An image dataset for depth of field classification'}] +zpn/clintox,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +biglam/yalta_ai_segmonto_manuscript_dataset,biglam,"['arxiv.org/abs/2207.11230', 'doi.org/10.5281/zenodo.6814770](https://doi.org/10.5281/zenodo.6814770)']" +mounikaiiith/Telugu_Emotion,mounikaiiith,"[{'title': 'Am I a Resource-Poor Language? Data Sets, Embeddings, Models and Analysis for four different NLP tasks in Telugu Language'}]" +sinhala-nlp/SOLD,sinhala-nlp,[{'title': 'SOLD: Sinhala Offensive Language Dataset'}] +income/scifact-top-20-gen-queries,income,[{'title': '{BEIR'}] +MMG/SpanishBFF,MMG,"['arxiv.org/abs/2302.12746', 'doi.org/10.48550/arxiv.2302.12746,']" +wanyu/IteraTeR_v2,wanyu,['arxiv.org/abs/2204.03685'] +mxeval/mxeval,mxeval,"['arxiv.org/abs/2210.14868', {'title': 'Multi-lingual Evaluation of Code Generation Models'}]" +nbroad/mediasum,nbroad,"['arxiv.org/abs/2103.06410', {'title': 'MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization'}]" +BeIR/dbpedia-entity-generated-queries,BeIR,[{'title': '{BEIR'}] +batterydata/battery-device-data-qa,batterydata,[{'title': 'BatteryBERT: A Pretrained Language Model for Battery Database Enhancement'}] +MicPie/unpredictable_w3-org,MicPie,['arxiv.org/abs/2208.01009'] +anjalyjayakrishnan/test,anjalyjayakrishnan,"['arxiv.org/abs/2206.01205', {'title': 'Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages'}]" +lmvasque/caes,lmvasque,"['doi.org/10.1080/23247797.2015.1084685"",', 'bibtex']" +barkermrl/imagenet-a,barkermrl,[{'title': 'Natural Adversarial Examples'}] +pysentimiento/spanish-tweets,pysentimiento,['bibtex'] +OGB/ogbg-molpcba,OGB,['bibtex'] +Team-PIXEL/rendered-wikipedia-english,Team-PIXEL,"['arxiv.org/abs/2207.06991', {'title': 'Language Modelling with Pixels'}]" +rubentito/mp-docvqa,rubentito,"['arxiv.org/abs/2212.05935', {'title': 'Hierarchical multimodal transformers for Multi-Page DocVQA'}]" +DFKI-SLT/scidtb,DFKI-SLT,['bibtex'] +jonathanli/law-stack-exchange,jonathanli,['bibtex'] +irds/msmarco-document-v2,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +pritamdeka/cord-19-fulltext,pritamdeka,[{'title': 'CORD-19: The Covid-19 Open Research Dataset'}] +Rexhaif/ru-med-ner,Rexhaif,['arxiv.org/abs/2201.06499'] +krandiash/sc09,krandiash,"[{'title': ""It's Raw! Audio Generation with State-Space Models""}]" +Paul/hatecheck-french,Paul,['arxiv.org/abs/2206.09917'] +billray110/corpus-of-diverse-styles,billray110,"['arxiv.org/abs/2010.05700', 'bibtex']" +chcaa/dagw-word-frequencies-normalized-by-domain,chcaa,['arxiv.org/abs/2005.03521'] +Paul/hatecheck-polish,Paul,['arxiv.org/abs/2206.09917'] +muhammadravi251001/augmented-indo-nli,muhammadravi251001,['bibtex'] +NazaGara/wikiner-es,NazaGara,['doi.org/10.1016/j.artint.2012.03.006)'] +Silvia/WITS,Silvia,['bibtex'] +ConvLab/kvret,ConvLab,['bibtex'] +pritamdeka/cord-19-abstract,pritamdeka,[{'title': 'CORD-19: The Covid-19 Open Research Dataset'}] +qanastek/ANTILLES,qanastek,['bibtex'] +graphs-datasets/reddit_threads,graphs-datasets,[{'title': '{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs'}] +csebuetnlp/BanglaNMT,csebuetnlp,['bibtex'] +hackathon-pln-es/biomed_squad_es_v2,hackathon-pln-es,['bibtex'] +fangyuan/lfqa_discourse,fangyuan,"['arxiv.org/abs/2203.11048', {'title': 'How Do We Answer Complex Questions: Discourse Structure of Long-form Answers'}]" +ConvLab/metalwoz,ConvLab,['bibtex'] +UKPLab/hate_speech_offensive,UKPLab,['arxiv.org/abs/1703.04009'] +mounikaiiith/Telugu_Sentiment,mounikaiiith,"[{'title': 'Am I a Resource-Poor Language? Data Sets, Embeddings, Models and Analysis for four different NLP tasks in Telugu Language'}]" +Genius1237/TyDiP,Genius1237,['bibtex'] +fever/feverous,fever,"['arxiv.org/abs/2106.05707', 'bibtex']" +zpn/delaney,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +muhammadravi251001/translated-indo-nli,muhammadravi251001,['bibtex'] +keshan/multispeaker-tts-sinhala,keshan,"['doi.org/10.21437/SLTU.2018-14}', 'bibtex']" +irds/wikiclir_ru,irds,['bibtex'] +slnader/fcc-comments,slnader,"['doi.org/10.1002/poi3.327', {'title': 'Do fake online comments pose a threat to regulatory policymaking? Evidence from Internet regulation in the United States'}]" +gusevski/factrueval2016,gusevski,['arxiv.org/abs/2005.00614'] +AhmedSSoliman/CodeXGLUE-CONCODE,AhmedSSoliman,[{'title': 'Mapping language to code in programmatic context'}] +AhmedSSabir/Textual-Image-Caption-Dataset,AhmedSSabir,"['arxiv.org/abs/2301.08784', {'title': 'Visual Semantic Relatedness Dataset for Image Captioning'}]" +vector/structuretest,vector,[{'title': 'Neural Network Acceptability Judgments'}] +tiagoblima/nilc-school-books,tiagoblima,[{'title': 'Predição da Complexidade Textual de Recursos Educacionais Abertos em Português'}] +MicPie/unpredictable_5k,MicPie,['arxiv.org/abs/2208.01009'] +BeIR/hotpotqa-generated-queries,BeIR,[{'title': '{BEIR'}] +SerdarHelli/SegmentationOfTeethPanoramicXRayImages,SerdarHelli,[{'title': 'Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing'}] +BeIR/arguana-generated-queries,BeIR,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster12,MicPie,['arxiv.org/abs/2208.01009'] +KnutJaegersberg/Interpretable_word_embeddings_large_cskg,KnutJaegersberg,['arxiv.org/abs/1806.05521'] +MicPie/unpredictable_full,MicPie,['arxiv.org/abs/2208.01009'] +income/bioasq-top-20-gen-queries,income,[{'title': '{BEIR'}] +ruanchaves/hashset_manual,ruanchaves,"['arxiv.org/abs/2201.06741', {'title': 'HashSet--A Dataset For Hashtag Segmentation'}]" +zpn/tox21_srp53,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +brema76/political_personalization_it,brema76,[{'title': 'Combining NLP techniques and statistical modeling to analyze gender gaps in the mediated personalization of politics'}] +sanchit-gandhi/librispeech_asr_dummy,sanchit-gandhi,[{'title': 'Librispeech: an ASR corpus based on public domain audio books'}] +income/nq-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster19,MicPie,['arxiv.org/abs/2208.01009'] +filwsyl/ascend,filwsyl,['arxiv.org/abs/2112.06223'] +projecte-aina/viquiquad,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4562344)', 'bibtex']" +MicPie/unpredictable_cluster11,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_baseball-fantasysports-yahoo-com,MicPie,['arxiv.org/abs/2208.01009'] +BeIR/cqadupstack-qrels,BeIR,[{'title': '{BEIR'}] +toloka/WSDMCup2023,toloka,"['doi.org/10.5281/zenodo.7057740', 'bibtex']" +cooleel/xfund_de,cooleel,['bibtex'] +income/cqadupstack-webmasters-top-20-gen-queries,income,[{'title': '{BEIR'}] +BeIR/climate-fever-generated-queries,BeIR,[{'title': '{BEIR'}] +NbAiLab/nb_bert_debiased,NbAiLab,"['arxiv.org/abs/2104.09617', {'title': 'Operationalizing a National Digital Library: The Case for a {N'}]" +MicPie/unpredictable_support-google-com,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_rated-high,MicPie,['arxiv.org/abs/2208.01009'] +mounikaiiith/Telugu-Sarcasm,mounikaiiith,"[{'title': 'Am I a Resource-Poor Language? Data Sets, Embeddings, Models and Analysis for four different NLP tasks in Telugu Language'}]" +pain/ArASL_Database_Grayscale,pain,"['doi.org/10.1016/j.dib.2019.103777},', {'title': 'ArASL: Arabic Alphabets Sign Language Dataset'}]" +MicPie/unpredictable_cluster02,MicPie,['arxiv.org/abs/2208.01009'] +projecte-aina/ancora-ca-ner,projecte-aina,"['arxiv.org/abs/2107.07903', 'doi.org/10.5281/zenodo.4529299)', 'bibtex']" +irds/mmarco_zh_train,irds,[{'title': '{mMARCO'}] +MicPie/unpredictable_cluster21,MicPie,['arxiv.org/abs/2208.01009'] +quincyqiang/test,quincyqiang,[{'title': 'Neural Network Acceptability Judgments'}] +MicPie/unpredictable_cluster23,MicPie,['arxiv.org/abs/2208.01009'] +income/cqadupstack-android-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_dummies-com,MicPie,['arxiv.org/abs/2208.01009'] +income/signal1m-top-20-gen-queries,income,[{'title': '{BEIR'}] +research-backup/semeval2012_relational_similarity_v4,research-backup,['bibtex'] +yoshitomo-matsubara/srsd-feynman_medium,yoshitomo-matsubara,"['arxiv.org/abs/2206.10540', {'title': 'Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery'}]" +MicPie/unpredictable_cluster13,MicPie,['arxiv.org/abs/2208.01009'] +zpn/pcba_686978,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +yarongef/human_proteome_doublets,yarongef,"['doi.org/10.1093/bioinformatics/btac474},']" +income/fiqa-top-20-gen-queries,income,[{'title': '{BEIR'}] +graphs-datasets/AQSOL,graphs-datasets,"['arxiv.org/abs/2003.00982', 'bibtex']" +MicPie/unpredictable_mmo-champion-com,MicPie,['arxiv.org/abs/2208.01009'] +nateraw/us-accidents,nateraw,['arxiv.org/abs/1906.05409'] +MicPie/unpredictable_mgoblog-com,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_sporcle-com,MicPie,['arxiv.org/abs/2208.01009'] +SimulaMet-HOST/VISEM-Tracking,SimulaMet-HOST,"['arxiv.org/abs/2212.02842', {'title': 'VISEM-Tracking: Human Spermatozoa Tracking Dataset'}]" +OGB/ogbg-ppa,OGB,['bibtex'] +income/cqadupstack-mathematica-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_gamefaqs-com,MicPie,['arxiv.org/abs/2208.01009'] +GuiGel/meddocan,GuiGel,"[{'title': 'Automatic De-identification of Medical Texts in Spanish: the MEDDOCAN Track, Corpus, Guidelines, Methods and Evaluation of Results'}]" +income/cqadupstack-wordpress-top-20-gen-queries,income,[{'title': '{BEIR'}] +biglam/v4design_europeana_style_dataset,biglam,['doi.org/10.5281/zenodo.4896487}'] +Amir13/conll2003-persian,Amir13,"['arxiv.org/abs/2302.09611', 'doi.org/10.48550/arxiv.2302.09611,']" +Twitter/HashtagPrediction,Twitter,"['arxiv.org/abs/2209.07562', {'title': 'TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations'}]" +filwsyl/video_tags,filwsyl,[{'title': 'MNIST handwritten digit database'}] +Amir13/ncbi-persian,Amir13,"['arxiv.org/abs/2302.09611', 'doi.org/10.48550/arxiv.2302.09611,']" +income/climate-fever-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_rated-medium,MicPie,['arxiv.org/abs/2208.01009'] +taqwa92/cm.trial,taqwa92,"['arxiv.org/abs/1912.06670', 'bibtex']" +MicPie/unpredictable_dividend-com,MicPie,['arxiv.org/abs/2208.01009'] +income/cqadupstack-stats-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster14,MicPie,['arxiv.org/abs/2208.01009'] +lishuyang/recipepairs,lishuyang,['bibtex'] +OGB/ogbg-code2,OGB,['bibtex'] +MicPie/unpredictable_bulbapedia-bulbagarden-net,MicPie,['arxiv.org/abs/2208.01009'] +irds/beir_fiqa_train,irds,"['arxiv.org/abs/2104.08663', {'title': ""WWW'18 Open Challenge: Financial Opinion Mining and Question Answering""}]" +ConvLab/sgd2,ConvLab,[{'title': 'SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems'}] +GEM/xmediasum,GEM,['bibtex'] +yarongef/human_proteome_singlets,yarongef,"['doi.org/10.1093/bioinformatics/btac474},']" +yarongef/human_proteome_triplets,yarongef,"['doi.org/10.1093/bioinformatics/btac474},']" +BeIR/dbpedia-entity-qrels,BeIR,[{'title': '{BEIR'}] +Sidd2899/MyspeechASR,Sidd2899,[{'title': 'Myspeech: an ASR corpus based on public domain audio books'}] +income/trec-news-top-20-gen-queries,income,[{'title': '{BEIR'}] +mounikaiiith/Telugu_Clickbait,mounikaiiith,[{'title': 'Clickbait Detection in Telugu: Overcoming NLP Challenges in Resource-Poor Languages using Benchmarked Techniques'}] +income/cqadupstack-gis-top-20-gen-queries,income,[{'title': '{BEIR'}] +Krystalan/xmediasum,Krystalan,['bibtex'] +MicPie/unpredictable_cluster29,MicPie,['arxiv.org/abs/2208.01009'] +batterydata/cner,batterydata,['arxiv.org/abs/2006.03039'] +MicPie/unpredictable_unique,MicPie,['arxiv.org/abs/2208.01009'] +research-backup/semeval2012_relational_similarity_v7,research-backup,['bibtex'] +jonathanli/legal-advice-reddit,jonathanli,['bibtex'] +MicPie/unpredictable_cluster24,MicPie,['arxiv.org/abs/2208.01009'] +BeIR/quora-generated-queries,BeIR,[{'title': '{BEIR'}] +income/robust04-top-20-gen-queries,income,[{'title': '{BEIR'}] +income/cqadupstack-unix-top-20-gen-queries,income,[{'title': '{BEIR'}] +income/cqadupstack-programmers-top-20-gen-queries,income,[{'title': '{BEIR'}] +BeIR/cqadupstack-generated-queries,BeIR,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster28,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cram-com,MicPie,['arxiv.org/abs/2208.01009'] +BeIR/quora-qrels,BeIR,[{'title': '{BEIR'}] +sileod/discourse_marker_qa,sileod,['bibtex'] +MicPie/unpredictable_msdn-microsoft-com,MicPie,['arxiv.org/abs/2208.01009'] +sebastian-hofstaetter/tripclick-training,sebastian-hofstaetter,['arxiv.org/abs/2201.00365'] +zpn/bace_classification,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +MicPie/unpredictable_ensembl-org,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cluster01,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cluster20,MicPie,['arxiv.org/abs/2208.01009'] +ConvLab/sgd3,ConvLab,[{'title': 'SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems'}] +MicPie/unpredictable_cluster06,MicPie,['arxiv.org/abs/2208.01009'] +income/cqadupstack-tex-top-20-gen-queries,income,[{'title': '{BEIR'}] +income/trec-covid-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster09,MicPie,['arxiv.org/abs/2208.01009'] +income/cqadupstack-gaming-top-20-gen-queries,income,[{'title': '{BEIR'}] +BigBang/galaxyzoo-decals,BigBang,['doi.org/10.5281/zenodo.4573248}'] +niurl/eraser_esnli,niurl,['arxiv.org/abs/1911.03429'] +graphs-datasets/CSL,graphs-datasets,"['arxiv.org/abs/2003.00982', 'bibtex']" +BeIR/webis-touche2020-generated-queries,BeIR,[{'title': '{BEIR'}] +vkpriya/str-2022,vkpriya,"['arxiv.org/abs/2110.04845', {'title': 'What Makes Sentences Semantically Related: A Textual Relatedness Dataset and Empirical Study'}]" +nazneen/self-instruct-seed,nazneen,['arxiv.org/abs/2212.10560'] +BeIR/nfcorpus-generated-queries,BeIR,[{'title': '{BEIR'}] +ctu-aic/ctkfacts,ctu-aic,['arxiv.org/abs/2201.11115'] +wkrl/cord,wkrl,[{'title': 'CORD: A Consolidated Receipt Dataset for Post-OCR Parsing'}] +thsant/wgisd,thsant,"['arxiv.org/abs/1803.09010', 'doi.org/10.1007/978-3-030-65414-6_19)).']" +conceptofmind/pile_cc,conceptofmind,['arxiv.org/abs/2101.00027'] +research-backup/semeval2012_relational_similarity_v5,research-backup,['bibtex'] +MicPie/unpredictable_cluster03,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cluster00,MicPie,['arxiv.org/abs/2208.01009'] +sberbank-ai/Peter,sberbank-ai,['arxiv.org/abs/2103.09354'] +rony/climate-change-MRC,rony,[{'title': 'Climate Bot: A Machine Reading Comprehension System for Climate Change Question Answering.'}] +julien-c/reactiongif,julien-c,['arxiv.org/abs/2105.09967'] +nateraw/rice-image-dataset,nateraw,['doi.org/10.1016/j.compag.2021.106285'] +MicPie/unpredictable_wiki-openmoko-org,MicPie,['arxiv.org/abs/2208.01009'] +zpn/lipo,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +acul3/Laion_Indo,acul3,"['arxiv.org/abs/2111.02114', 'bibtex']" +irds/trec-arabic_ar2002,irds,[{'title': 'The TREC-2002 Arabic/English CLIR Track'}] +MicPie/unpredictable_cluster10,MicPie,['arxiv.org/abs/2208.01009'] +vpetukhov/bible_tts_hausa,vpetukhov,['arxiv.org/abs/2207.03546'] +ConvLab/sgd4,ConvLab,[{'title': 'SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems'}] +thennal/IMaSC,thennal,['arxiv.org/abs/2211.12796'] +tonytan48/Re-DocRED,tonytan48,"['arxiv.org/abs/2205.12696', {'title': 'Revisiting DocRED – Addressing the False Negative Problem in Relation Extraction'}]" +MicPie/unpredictable_cluster08,MicPie,['arxiv.org/abs/2208.01009'] +BeIR/signal1m-generated-queries,BeIR,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster-noise,MicPie,['arxiv.org/abs/2208.01009'] +nateraw/espeni-3,nateraw,['doi.org/10.5281/zenodo.6606485}'] +MicPie/unpredictable_cluster26,MicPie,['arxiv.org/abs/2208.01009'] +mounikaiiith/Telugu-Hatespeech,mounikaiiith,"[{'title': 'Am I a Resource-Poor Language? Data Sets, Embeddings, Models and Analysis for four different NLP tasks in Telugu Language'}]" +nlphuji/vasr,nlphuji,['arxiv.org/abs/2212.04542'] +graphs-datasets/deezer_ego_nets,graphs-datasets,[{'title': '{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs'}] +sakharamg/AviationQA,sakharamg,['arxiv.org/abs/2301.04013'] +MicPie/unpredictable_cluster17,MicPie,['arxiv.org/abs/2208.01009'] +zpn/bbbp,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +income/arguana-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster07,MicPie,['arxiv.org/abs/2208.01009'] +graphs-datasets/MD17-naphthalene,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +zpn/clearance,zpn,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +Poulpidot/FrenchHateSpeechSuperset,Poulpidot,"['doi.org/10.3390/info13070318', {'title': 'An Annotated Corpus for Sexism Detection in French Tweets'}]" +income/dbpedia-entity-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cappex-com,MicPie,['arxiv.org/abs/2208.01009'] +Lo/clip-bert-data,Lo,['arxiv.org/abs/2109.11321'] +BeIR/fever-generated-queries,BeIR,[{'title': '{BEIR'}] +parambharat/mile_dataset,parambharat,['arxiv.org/abs/2207.13331'] +income/quora-top-20-gen-queries,income,[{'title': '{BEIR'}] +Paul/hatecheck-hindi,Paul,['arxiv.org/abs/2206.09917'] +deutsche-telekom/NLU-Evaluation-Data-en-de,deutsche-telekom,['arxiv.org/abs/1903.05566'] +research-backup/semeval2012_relational_similarity_v3,research-backup,['bibtex'] +toloka/VoxDIY-RusNews,toloka,['bibtex'] +ConvLab/sgd5,ConvLab,[{'title': 'SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems'}] +hendrycks/ethics,hendrycks,[{'title': 'Aligning AI With Shared Human Values'}] +Xieyiyiyi/ceshi0119,Xieyiyiyi,[{'title': 'BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions'}] +MicPie/unpredictable_cluster22,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cluster25,MicPie,['arxiv.org/abs/2208.01009'] +MicPie/unpredictable_cluster04,MicPie,['arxiv.org/abs/2208.01009'] +irds/codesearchnet,irds,[{'title': 'CodeSearchNet Challenge: Evaluating the State of Semantic Code Search'}] +cryptexcode/MPST,cryptexcode,['bibtex'] +lmqg/qag_tweetqa,lmqg,"['arxiv.org/abs/2210.03992', 'bibtex']" +batubayk/HU-News,batubayk,['bibtex'] +BeIR/robust04-generated-queries,BeIR,[{'title': '{BEIR'}] +barkermrl/mnist-c,barkermrl,['arxiv.org/abs/1906.02337'] +MicPie/unpredictable_sittercity-com,MicPie,['arxiv.org/abs/2208.01009'] +marksverdhei/clickbait_title_classification,marksverdhei,"['arxiv.org/abs/1610.09786', {'title': 'Stop Clickbait: Detecting and preventing clickbaits in online news media'}]" +income/hotpotqa-top-20-gen-queries,income,[{'title': '{BEIR'}] +UKPLab/amazon_counterfactual_en,UKPLab,['arxiv.org/abs/2104.06893'] +pysentimiento/spanish-tweets-small,pysentimiento,['bibtex'] +nlphuji/open_images_dataset_v7,nlphuji,"['arxiv.org/abs/2105.02317', {'title': 'A Step Toward More Inclusive People Annotations for Fairness'}]" +copenlu/tydiqa_copenlu,copenlu,[{'title': 'TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages'}] +recmeapp/AARSynth,recmeapp,['doi.org/10.1109/BigData50022.2020.9377983.'] +mqddb/test-dataset,mqddb,[{'title': 'MNIST handwritten digit database'}] +MicPie/unpredictable_cluster18,MicPie,['arxiv.org/abs/2208.01009'] +Twitter/TwitterFollowGraph,Twitter,[{'title': 'kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval'}] +Adapting/chinese_biomedical_NER_dataset,Adapting,[{'title': 'Conceptualized Representation Learning for Chinese Biomedical Text Mining'}] +income/cqadupstack-english-top-20-gen-queries,income,[{'title': '{BEIR'}] +lorenzoscottb/PLANE-ood,lorenzoscottb,['bibtex'] +income/webis-touche2020-top-20-gen-queries,income,[{'title': '{BEIR'}] +biu-nlp/WEC-Eng,biu-nlp,['bibtex'] +MicPie/unpredictable_cluster15,MicPie,['arxiv.org/abs/2208.01009'] +methodidacte/penguins,methodidacte,['doi.org/10.1371/journal.pone.0090081'] +MicPie/unpredictable_cluster27,MicPie,['arxiv.org/abs/2208.01009'] +irds/codesearchnet_train,irds,[{'title': 'CodeSearchNet Challenge: Evaluating the State of Semantic Code Search'}] +Twitter/TwitterFaveGraph,Twitter,"['arxiv.org/abs/2210.16271', {'title': 'MiCRO: Multi-interest Candidate Retrieval Online'}]" +rogerdehe/xfund,rogerdehe,['bibtex'] +income/fever-top-20-gen-queries,income,[{'title': '{BEIR'}] +MicPie/unpredictable_cluster16,MicPie,['arxiv.org/abs/2208.01009'] +Amir13/ontonotes5-persian,Amir13,"['arxiv.org/abs/2302.09611', 'doi.org/10.48550/arxiv.2302.09611,']" +Matrix430/CONDA,Matrix430,"['arxiv.org/abs/2106.06213', 'bibtex']" +holylovenia/TITML-IDN,holylovenia,[{'title': 'A large vocabulary continuous speech recognition system for Indonesian language'}] +huggan/vangogh2photo,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +planhanasan/github-issues,planhanasan,"['arxiv.org/abs/2005.00614', 'doi.org/),', 'bibtex']" +djghosh/wds_cars_test,djghosh,[{'title': '3D Object Representations for Fine-Grained Categorization'}] +Peihao/test-dateset,Peihao,"['arxiv.org/abs/1910.10683', 'bibtex']" +nateraw/food101,nateraw,[{'title': 'Food-101 -- Mining Discriminative Components with Random Forests'}] +LRGB/voc_superpixels_edge_wt_coord_feat_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +nlphuji/fairface_val_padding_125,nlphuji,"[{'title': 'FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation'}]" +conceptofmind/pile_wikipedia_en,conceptofmind,['arxiv.org/abs/2101.00027'] +LRGB/peptides-structural,LRGB,[{'title': 'Long Range Graph Benchmark'}] +kietzmannlab/ecoset,kietzmannlab,"['doi.org/10.1073/pnas.2011417118)', {'title': 'An ecologically motivated image dataset for deep learning yields better models of human vision'}]" +ZIZOU/Arabic_Squad,ZIZOU,['bibtex'] +irds/mmarco_v2_zh,irds,[{'title': '{mMARCO'}] +nlphuji/fairface_val_padding_025,nlphuji,"[{'title': 'FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation'}]" +bstds/indo_law,bstds,[{'title': 'Predicting the Category and the Length of Punishment in Indonesian Courts Based on Previous Court Decision Documents'}] +semeru/Text-Code-concode-Java,semeru,[{'title': 'Mapping language to code in programmatic context'}] +google/cvss,google,"['arxiv.org/abs/2201.03713', {'title': '{CVSS'}]" +Jzuluaga/atco2_corpus_1h,Jzuluaga,"['arxiv.org/abs/2211.04054', {'title': 'How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications'}]" +LanceaKing/asvspoof2019,LanceaKing,['arxiv.org/abs/1911.01601'] +huggan/cityscapes,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +madrylab/imagenet-star-tokens,madrylab,['arxiv.org/abs/2302.07865'] +sasha/birdsnap,sasha,[{'title': 'Birdsnap: Large-scale fine-grained visual categorization of birds'}] +bloomberg/entsum,bloomberg,"['doi.org/10.35111/77ba-9x74,', 'bibtex']" +WillHeld/blimp,WillHeld,"['doi.org/10.1162/tacl_a_00321},', 'bibtex']" +irds/nyt_wksup,irds,['bibtex'] +irds/mr-tydi_te_train,irds,[{'title': '{Mr. TyDi'}] +irds/lotte_pooled_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_hotpotqa,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/car_v1.5_trec-y1_manual,irds,[{'title': 'TREC Complex Answer Retrieval Overview.'}] +irds/lotte_science_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +larrylawl/multilexnorm,larrylawl,['bibtex'] +becurrio/advABSA,becurrio,['bibtex'] +irds/beir_hotpotqa_test,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +timbrooks/instructpix2pix-clip-filtered,timbrooks,['arxiv.org/abs/2211.09800'] +irds/argsme_2020-04-01_touche-2020-task-1_uncorrected,irds,['bibtex'] +conceptofmind/pile_open_subtitles,conceptofmind,['arxiv.org/abs/2101.00027'] +irds/car_v2.0,irds,[{'title': '{TREC CAR'}] +irds/mmarco_v2_dt_train,irds,[{'title': '{mMARCO'}] +irds/mr-tydi_ja_train,irds,[{'title': '{Mr. TyDi'}] +severo/winogavil,severo,"['arxiv.org/abs/2207.12576', {'title': 'WinoGAViL: Gamified Association Benchmark to Challenge Vision-and-Language Models'}]" +irds/mr-tydi_ja_dev,irds,[{'title': '{Mr. TyDi'}] +nateraw/hyperbard,nateraw,['doi.org/10.5281/zenodo.6627159}'] +irds/msmarco-passage_eval,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/mr-tydi_th_train,irds,[{'title': '{Mr. TyDi'}] +irds/mr-tydi_ar,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_zh_dev_v1.1,irds,[{'title': '{mMARCO'}] +irds/lotte_recreation_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +GateNLP/broad_twitter_corpus,GateNLP,[{'title': 'Broad twitter corpus: A diverse named entity recognition resource'}] +irds/tripclick_train_tail,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +actdan2016/sample1,actdan2016,['arxiv.org/abs/2111.11431'] +irds/nyt_trec-core-2017,irds,['bibtex'] +irds/mmarco_v2_ru_dev,irds,[{'title': '{mMARCO'}] +irds/wikiclir_ro,irds,['bibtex'] +irds/beir_dbpedia-entity_test,irds,"['arxiv.org/abs/2104.08663', {'title': 'DBpedia-Entity v2: A Test Collection for Entity Search'}]" +irds/mmarco_pt_dev_v1.1,irds,[{'title': '{mMARCO'}] +irds/wikir_fr14k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +irds/gov_trec-web-2002_named-page,irds,[{'title': 'Overview of the TREC-2002 Web Track'}] +biglam/early_printed_books_font_detection,biglam,['doi.org/10.5281/zenodo.3366686'] +irds/beir_quora_test,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +DavidVivancos/MindBigData2022,DavidVivancos,['arxiv.org/abs/2212.14746'] +graphs-datasets/MD17-uracil,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +NoraAlt/Mawqif_Stance-Detection,NoraAlt,['bibtex'] +breadlicker45/1m-YA-dataset,breadlicker45,['doi.org/10.5281/zenodo.5259952'] +rlasseri/test-OrangeSum-small,rlasseri,"['arxiv.org/abs/2010.12321', {'title': 'BARThez: a Skilled Pretrained French Sequence-to-Sequence Model'}]" +nlphuji/dollar_street_test,nlphuji,[{'title': 'The Dollar Street Dataset: Images Representing the Geographic and Socioeconomic Diversity of the World'}] +irds/lotte_pooled_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_v2_id_dev,irds,[{'title': '{mMARCO'}] +irds/mmarco_v2_de_dev,irds,[{'title': '{mMARCO'}] +LRGB/voc_superpixels_edge_wt_region_boundary_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +orhunc/Bias-Evaluation-Turkish,orhunc,['arxiv.org/abs/1903.10561'] +irds/beir_nfcorpus_test,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/mr-tydi_ar_test,irds,[{'title': '{Mr. TyDi'}] +LRGB/coco_superpixels_edge_wt_only_coord_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +irds/mmarco_id,irds,[{'title': '{mMARCO'}] +irds/mmarco_zh_dev,irds,[{'title': '{mMARCO'}] +arch-raven/music-fingerprint-dataset,arch-raven,['arxiv.org/abs/2010.11910'] +irds/mmarco_es,irds,[{'title': '{mMARCO'}] +ConvLab/crosswoz,ConvLab,['bibtex'] +irds/mr-tydi_ar_dev,irds,[{'title': '{Mr. TyDi'}] +nlphuji/flickr_1k_test_image_text_retrieval,nlphuji,[{'title': 'From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions'}] +irds/argsme_2020-04-01_touche-2021-task-1,irds,['bibtex'] +irds/mr-tydi_fi_dev,irds,[{'title': '{Mr. TyDi'}] +Loie/VGGSound,Loie,['arxiv.org/abs/2004.14368'] +irds/mmarco_v2_vi_dev,irds,[{'title': '{mMARCO'}] +huggan/ae_photos,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +djghosh/wds_imagenet-o_test,djghosh,"['arxiv.org/abs/1907.07174', {'title': 'Natural Adversarial Examples'}]" +lsb/million-english-numbers,lsb,['arxiv.org/abs/1803.09010'] +irds/mr-tydi_te_test,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_zh_dev_small,irds,[{'title': '{mMARCO'}] +irds/msmarco-passage,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/msmarco-passage_train_triples-small,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/trec-arabic_ar2001,irds,"[{'title': 'The TREC-2001 Cross-Language Information Retrieval Track: Searching Arabic using English, French or Arabic Queries'}]" +irds/wapo_v2_trec-news-2019,irds,[{'title': 'TREC 2019 News Track Overview'}] +irds/msmarco-document-v2_trec-dl-2020,irds,[{'title': 'Overview of the TREC 2020 deep learning track'}] +irds/aquaint_trec-robust-2005,irds,[{'title': 'Overview of the TREC 2005 Robust Retrieval Track'}] +irds/mr-tydi_id_test,irds,[{'title': '{Mr. TyDi'}] +djghosh/wds_country211_test,djghosh,"['arxiv.org/abs/2103.00020', 'bibtex']" +irds/wikiclir_pt,irds,['bibtex'] +irds/clueweb12_b13_ntcir-www-2,irds,[{'title': 'Overview of the NTCIR-14 We Want Web Task'}] +djghosh/wds_vtab-resisc45_test,djghosh,"['arxiv.org/abs/1703.00121', 'bibtex']" +irds/mmarco_v2_id_train,irds,[{'title': '{mMARCO'}] +irds/disks45_nocr_trec7,irds,[{'title': 'Overview of the Seventh Text Retrieval Conference (TREC-7)'}] +irds/mmarco_v2_pt_dev,irds,[{'title': '{mMARCO'}] +irds/trec-robust04_fold3,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +society-ethics/papers,society-ethics,['arxiv.org/abs/1906.02569'] +irds/wikiclir_ja,irds,['bibtex'] +irds/hc4_ru,irds,"['arxiv.org/abs/2201.09992', 'bibtex']" +irds/codec_economics,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +egm517/hupd_augmented,egm517,"['arxiv.org/abs/2207.04043', {'title': 'The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications'}]" +prerona/new_dataset,prerona,['bibtex'] +irds/clueweb12_b13_trec-misinfo-2019,irds,[{'title': 'Overview of the TREC 2019 Decision Track'}] +irds/argsme_1.0_touche-2020-task-1_uncorrected,irds,['bibtex'] +irds/car_v1.5,irds,[{'title': '{TREC CAR'}] +Short-Answer-Feedback/saf_micro_job_german,Short-Answer-Feedback,['bibtex'] +irds/lotte_lifestyle_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/gov_trec-web-2002,irds,[{'title': 'Overview of the TREC-2002 Web Track'}] +djghosh/wds_imagenet-a_test,djghosh,"['arxiv.org/abs/1907.07174', {'title': 'Natural Adversarial Examples'}]" +irds/trec-robust04_fold5,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +irds/lotte_pooled_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +NathanGavenski/How-Resilient-are-Imitation-Learning-Methods-to-Sub-Optimal-Experts,NathanGavenski,[{'title': 'How Resilient are Imitation Learning Methods to Sub-Optimal Experts?'}] +DFKI-SLT/sciarg,DFKI-SLT,[{'title': 'An argument-annotated corpus of scientific publications'}] +irds/msmarco-passage_trec-dl-hard_fold4,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/wikiclir_uk,irds,['bibtex'] +irds/cord19_trec-covid,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +chcaa/dagw-word-frequencies,chcaa,['arxiv.org/abs/2005.03521'] +irds/msmarco-passage_trec-dl-hard_fold3,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +huggan/iphone2dslr_flower,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +irds/mmarco_v2_ja,irds,[{'title': '{mMARCO'}] +irds/beir_fever_test,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/mmarco_v2_de_train,irds,[{'title': '{mMARCO'}] +irds/beir_fever_train,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/nfcorpus_train_video,irds,['bibtex'] +irds/trec-spanish_trec3,irds,[{'title': 'Overview of the Third Text REtrieval Conference (TREC-3)'}] +irds/tripclick_val_head_dctr,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +irds/medline_2017_trec-pm-2018,irds,[{'title': 'Overview of the TREC 2018 Precision Medicine Track'}] +ncats/EpiSet4BinaryClassification,ncats,[{'title': 'Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed'}] +nehruperumalla/forms,nehruperumalla,[{'title': 'CORD: A Consolidated Receipt Dataset for Post-OCR Parsing'}] +irds/mmarco_v2_hi,irds,[{'title': '{mMARCO'}] +irds/mmarco_de_dev,irds,[{'title': '{mMARCO'}] +ZhaofengWu/transparency-data,ZhaofengWu,"['arxiv.org/abs/2210.07468', 'bibtex']" +irds/nfcorpus_train,irds,['bibtex'] +djghosh/wds_imagenet1k_test,djghosh,['bibtex'] +LRGB/voc_superpixels_edge_wt_only_coord_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +Intel/CoreSearch,Intel,['bibtex'] +irds/disks45_nocr_trec-robust-2004_fold2,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +hugginglearners/malayalam_news,hugginglearners,[{'title': 'AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages'}] +irds/mr-tydi_bn_train,irds,[{'title': '{Mr. TyDi'}] +irds/gov2_trec-tb-2006_efficiency,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +nlphuji/beyond_web_scraping,nlphuji,"['arxiv.org/abs/2301.02560', 'bibtex']" +irds/mmarco_v2_fr,irds,[{'title': '{mMARCO'}] +jeasinema/SQA3D,jeasinema,['arxiv.org/abs/2210.07474'] +irds/istella22,irds,[{'title': 'The Istella22 Dataset: Bridging Traditional and Neural Learning to Rank Evaluation'}] +irds/mr-tydi_en,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_v2_hi_train,irds,[{'title': '{mMARCO'}] +kmfoda/gov_report,kmfoda,[{'title': 'BookSum: A Collection of Datasets for Long-form Narrative Summarization'}] +irds/beir_msmarco,irds,"['arxiv.org/abs/2104.08663', {'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}]" +irds/natural-questions,irds,[{'title': 'Natural Questions: a Benchmark for Question Answering Research'}] +irds/tripclick,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +irds/mmarco_it_dev,irds,[{'title': '{mMARCO'}] +irds/msmarco-document-v2_trec-dl-2019_judged,irds,[{'title': 'Overview of the TREC 2019 deep learning track'}] +sled-umich/Conversation-Entailment,sled-umich,['bibtex'] +irds/msmarco-document-v2_trec-dl-2020_judged,irds,[{'title': 'Overview of the TREC 2020 deep learning track'}] +irds/clinicaltrials_2017_trec-pm-2017,irds,[{'title': 'Overview of the TREC 2017 Precision Medicine Track'}] +irds/nfcorpus_dev,irds,['bibtex'] +nateraw/sync_food101,nateraw,[{'title': 'Food-101 -- Mining Discriminative Components with Random Forests'}] +irds/trec-spanish_trec4,irds,[{'title': 'Overview of the Fourth Text REtrieval Conference (TREC-4)'}] +dominguesm/positive-reframing-ptbr-dataset,dominguesm,"['arxiv.org/abs/2204.02952', 'bibtex']" +irds/trec-mandarin_trec5,irds,[{'title': 'Spanish and Chinese Document Retrieval in TREC-5'}] +irds/beir_scifact_test,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +ThierryZhou/test,ThierryZhou,['arxiv.org/abs/2111.11431'] +irds/tweets2013-ia_trec-mb-2014,irds,[{'title': 'Overview of the TREC-2014 Microblog Track'}] +irds/wikiclir_tl,irds,['bibtex'] +irds/msmarco-document_trec-dl-hard_fold1,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/lotte_lifestyle_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +deepsynthbody/deepfake_ecg,deepsynthbody,[{'title': 'DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine'}] +sharejing/BiPaR,sharejing,['arxiv.org/abs/1910.05040'] +mbateman/github-issues,mbateman,"['arxiv.org/abs/2005.00614', 'doi.org/),', 'bibtex']" +irds/msmarco-qna,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/beir_trec-covid,irds,"['arxiv.org/abs/2104.08663', {'title': 'CORD-19: The Covid-19 Open Research Dataset'}]" +research-backup/semeval2012_relational_similarity,research-backup,['bibtex'] +irds/gov2_trec-tb-2005_efficiency,irds,[{'title': 'The TREC 2005 Terabyte Track'}] +irds/gov2_trec-tb-2005_named-page,irds,[{'title': 'The TREC 2005 Terabyte Track'}] +irds/msmarco-passage_train_triples-v2,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/tripclick_train_torso,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +conceptofmind/pile_open_web_text_2,conceptofmind,['arxiv.org/abs/2101.00027'] +irds/mmarco_de,irds,[{'title': '{mMARCO'}] +irds/mmarco_v2_pt,irds,[{'title': '{mMARCO'}] +irds/lotte_lifestyle_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +graphs-datasets/alchemy,graphs-datasets,"['arxiv.org/abs/1906.09427', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +irds/clueweb12_b13_clef-ehealth_sv,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +ai4bharat/kathbath,ai4bharat,"['arxiv.org/abs/2208.11761', 'doi.org/10.48550/arxiv.2208.11761,']" +irds/mmarco_it,irds,[{'title': '{mMARCO'}] +irds/trec-cast_v1,irds,[{'title': 'CAsT 2019: The Conversational Assistance Track Overview'}] +chcaa/dagw-word-frequencies-by-domain,chcaa,['arxiv.org/abs/2005.03521'] +irds/kilt_codec_economics,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +irds/mr-tydi_te,irds,[{'title': '{Mr. TyDi'}] +irds/mr-tydi_sw_dev,irds,[{'title': '{Mr. TyDi'}] +irds/wapo_v2_trec-news-2018,irds,[{'title': 'TREC 2018 News Track Overview'}] +biu-nlp/Controlled-Text-Reduction-dataset,biu-nlp,"['arxiv.org/abs/2210.13449', 'doi.org/10.48550/arxiv.2210.13449,']" +irds/medline_2004_trec-genomics-2004,irds,[{'title': 'TREC 2004 Genomics Track Overview'}] +irds/mmarco_it_train,irds,[{'title': '{mMARCO'}] +bs-la/xP3ru,bs-la,[{'title': 'BLOOM+ 1: Adding Language Support to BLOOM for Zero-Shot Prompting'}] +irds/hc4_fa,irds,"['arxiv.org/abs/2201.09992', 'bibtex']" +irds/mr-tydi_bn_dev,irds,[{'title': '{Mr. TyDi'}] +irds/lotte_lifestyle_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_v2_de,irds,[{'title': '{mMARCO'}] +irds/wikiclir_fi,irds,['bibtex'] +irds/wikiclir_de,irds,['bibtex'] +irds/mr-tydi_ja,irds,[{'title': '{Mr. TyDi'}] +irds/lotte_pooled_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_scifact,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +djghosh/wds_imagenet-r_test,djghosh,"['arxiv.org/abs/2006.16241', {'title': 'The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization'}]" +irds/argsme_2020-04-01_touche-2020-task-1,irds,['bibtex'] +irds/beir_nfcorpus,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +argosopentech/xlent-de_en,argosopentech,['bibtex'] +irds/tripclick_train_head_dctr,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +irds/cord19_trec-covid_round5,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +irds/wikiclir_sv,irds,['bibtex'] +irds/beir_fever_dev,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +r-three/fib,r-three,[{'title': 'Evaluating the Factual Consistency of Large Language Models Through Summarization'}] +irds/nfcorpus,irds,['bibtex'] +irds/nfcorpus_test,irds,['bibtex'] +irds/mr-tydi_en_train,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_v2_ru_train,irds,[{'title': '{mMARCO'}] +irds/disks45_nocr_trec-robust-2004_fold5,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +graphs-datasets/MD17-benzene,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +spacemanidol/msmarco_passage_ranking,spacemanidol,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/antique_test,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +imvladikon/parashoot,imvladikon,"['arxiv.org/abs/1606.05250', {'title': 'ParaShoot: A Hebrew Question Answering Dataset'}]" +irds/nyt,irds,[{'title': 'The new york times annotated corpus'}] +benlipkin/braincode-neurips2022,benlipkin,['bibtex'] +azad-wolf-se/MH-FED,azad-wolf-se,"['arxiv.org/abs/2203.05975', 'bibtex']" +ICML2022/ProteinGym,ICML2022,['arxiv.org/abs/2205.13760'] +irds/wikiclir_ar,irds,['bibtex'] +lfoppiano/SuperMat,lfoppiano,"['doi.org/10.1080/27660400.2021.1918396).', 'bibtex']" +irds/beir_fiqa_dev,irds,"['arxiv.org/abs/2104.08663', {'title': ""WWW'18 Open Challenge: Financial Opinion Mining and Question Answering""}]" +irds/clueweb12_b13_clef-ehealth_hu,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +irds/mr-tydi_te_dev,irds,[{'title': '{Mr. TyDi'}] +irds/beir_dbpedia-entity_dev,irds,"['arxiv.org/abs/2104.08663', {'title': 'DBpedia-Entity v2: A Test Collection for Entity Search'}]" +irds/mr-tydi_fi_train,irds,[{'title': '{Mr. TyDi'}] +research-backup/conceptnet,research-backup,[{'title': 'Conceptnet 5.5: An open multilingual graph of general knowledge'}] +irds/mmarco_v2_dt_dev,irds,[{'title': '{mMARCO'}] +irds/codec_history,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +irds/mmarco_fr_train,irds,[{'title': '{mMARCO'}] +irds/wikir_it16k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +midas/pubmed,midas,[{'title': 'Keyphrase Extraction from Single Documents in the Open Domain Exploiting Linguistic and Statistical Methods'}] +irds/wikiclir_nn,irds,['bibtex'] +irds/codesearchnet_valid,irds,[{'title': 'CodeSearchNet Challenge: Evaluating the State of Semantic Code Search'}] +irds/lotte_lifestyle_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mr-tydi_sw,irds,[{'title': '{Mr. TyDi'}] +irds/clueweb12_b13_clef-ehealth_cs,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +irds/lotte_writing_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_id_train,irds,[{'title': '{mMARCO'}] +irds/msmarco-passage_trec-dl-hard_fold1,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +parvezmrobin/MCMD,parvezmrobin,['doi.org/10.5281/zenodo.5025758).'] +LHF/escorpius-m,LHF,"['arxiv.org/abs/2206.15147', 'bibtex']" +irds/clueweb12_b13_clef-ehealth,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +physionet/mimic-iv-demo,physionet,['doi.org/10.13026/07hj-2a80'] +irds/cord19_trec-covid_round1,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +pariajm/sharif_emotional_speech_dataset,pariajm,['doi.org/10.1007/s10579-018-9427-x}'] +LRGB/voc_superpixels_edge_wt_only_coord_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +yjernite/EthicsSocietyBlogBias,yjernite,"['arxiv.org/abs/2203.07785', 'doi.org/10.57967/hf/0208},', 'bibtex']" +HuggingFaceM4/TGIF,HuggingFaceM4,['arxiv.org/abs/1604.02748'] +irds/mr-tydi_id_train,irds,[{'title': '{Mr. TyDi'}] +irds/msmarco-document_trec-dl-hard,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/mr-tydi_id_dev,irds,[{'title': '{Mr. TyDi'}] +djghosh/wds_renderedsst2_test,djghosh,"['arxiv.org/abs/1910.04867', {'title': 'The Visual Task Adaptation Benchmark'}]" +djghosh/wds_imagenet_sketch_test,djghosh,"['arxiv.org/abs/1905.13549', {'title': 'Learning Robust Global Representations by Penalizing Local Predictive Power'}]" +huggan/grumpifycat,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +irds/mmarco_v2_it_train,irds,[{'title': '{mMARCO'}] +saibo/bookcorpus_deduplicated,saibo,"['arxiv.org/abs/2105.05241', 'doi.org/10.48550/arxiv.2105.05241,']" +irds/cord19_trec-covid_round2,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +biglam/yalta_ai_tabular_dataset,biglam,"['arxiv.org/abs/2207.11230', 'doi.org/10.5281/zenodo.6827706](https://doi.org/10.5281/zenodo.6827706)']" +irds/mr-tydi_th_dev,irds,[{'title': '{Mr. TyDi'}] +irds/mr-tydi_sw_test,irds,[{'title': '{Mr. TyDi'}] +irds/wikiclir_ko,irds,['bibtex'] +irds/wikiclir_zh,irds,['bibtex'] +irds/gov2_trec-tb-2006_efficiency_stream3,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +irds/medline_2017_trec-pm-2017,irds,[{'title': 'Overview of the TREC 2017 Precision Medicine Track'}] +irds/mr-tydi_ru_train,irds,[{'title': '{Mr. TyDi'}] +irds/kilt_codec,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +lhoestq/nllb,lhoestq,['arxiv.org/abs/2205.12654'] +Fatima-Gh/GLARE,Fatima-Gh,['doi.org/10.5281/zenodo.6457824)'] +irds/msmarco-document-v2_trec-dl-2019,irds,[{'title': 'Overview of the TREC 2019 deep learning track'}] +irds/touche-image_2022-06-13_touche-2022-task-3,irds,['bibtex'] +irds/antique_train_split200-valid,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +irds/wikiclir_es,irds,['bibtex'] +vector/test_demo,vector,['bibtex'] +irds/lotte_recreation_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +ivelin/ui_refexp,ivelin,['arxiv.org/abs/2107.13731'] +umanlp/xscitldr,umanlp,"['doi.org/10.1145/3529372.3530938},', 'bibtex']" +irds/wikiclir_en-simple,irds,['bibtex'] +saadob12/Autochart,saadob12,['arxiv.org/abs/2108.06897'] +elmurod1202/uzbek-sentiment-analysis,elmurod1202,['bibtex'] +irds/trec-cast_v1_2020,irds,[{'title': 'CAsT 2020: The Conversational Assistance Track Overview'}] +irds/pmc_v1_trec-cds-2014,irds,[{'title': 'Overview of the TREC 2014 Clinical Decision Support Track'}] +ganchengguang/resume-5label-classification,ganchengguang,[{'title': '英文履歴書データ抽出システムへの BERT 適用性の検討'}] +irds/mr-tydi_sw_train,irds,[{'title': '{Mr. TyDi'}] +irds/clueweb12_touche-2021-task-2,irds,['bibtex'] +jonathanli/hyperpartisan-longformer-split,jonathanli,['arxiv.org/abs/2004.05150'] +imranraad/github-emotion-surprise,imranraad,['arxiv.org/abs/2208.05573'] +irds/msmarco-passage_dev_judged,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +irds/codec,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +irds/mmarco_ru_train,irds,[{'title': '{mMARCO'}] +graphs-datasets/MD17-malonaldehyde,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +djghosh/wds_imagenetv2_test,djghosh,"['arxiv.org/abs/1902.10811', 'bibtex']" +saadob12/chart-to-text,saadob12,['arxiv.org/abs/2203.06486'] +irds/msmarco-document_trec-dl-hard_fold4,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/kilt_codec_history,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +irds/car_v1.5_trec-y1_auto,irds,[{'title': 'TREC Complex Answer Retrieval Overview.'}] +irds/mr-tydi_id,irds,[{'title': '{Mr. TyDi'}] +semeru/Text-Code-CodeSearchNet-Python,semeru,[{'title': 'Codesearchnet challenge: Evaluating the state of semantic code search'}] +irds/mmarco_v2_hi_dev,irds,[{'title': '{mMARCO'}] +irds/tripclick_train_hofstaetter-triples,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +irds/disks45_nocr_trec8,irds,[{'title': 'Overview of the Eight Text Retrieval Conference (TREC-8)'}] +irds/beir_quora,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +Ramos-Ramos/smallnorb,Ramos-Ramos,"['doi.org/10.1109/CVPR.2004.1315150)', {'title': 'Learning methods for generic object recognition with invariance to pose and lighting'}]" +LRGB/coco_superpixels_edge_wt_region_boundary_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +graphs-datasets/MD17-toluene,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +projecte-aina/cat_manynames,projecte-aina,['bibtex'] +LRGB/voc_superpixels_edge_wt_region_boundary_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +irds/lotte_science_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/lotte_science_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_ru_dev,irds,[{'title': '{mMARCO'}] +irds/mr-tydi_en_dev,irds,[{'title': '{Mr. TyDi'}] +irds/mr-tydi_fi_test,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_v2_dt,irds,[{'title': '{mMARCO'}] +irds/lotte_technology_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +toloka/TolokerGraph,toloka,['doi.org/10.5281/zenodo.7620795).'] +irds/lotte_technology_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/nyt_wksup_valid,irds,['bibtex'] +irds/lotte_technology_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_zh,irds,[{'title': '{mMARCO'}] +irds/clueweb12_b13_clef-ehealth_pl,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +irds/nfcorpus_test_nontopic,irds,['bibtex'] +irds/wikir_en59k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +irds/mmarco_v2_ru,irds,[{'title': '{mMARCO'}] +irds/msmarco-passage_trec-dl-hard,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/lotte_technology_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/antique,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +Martha-987/vivos,Martha-987,"['doi.org/10.5281/zenodo.7068130', 'bibtex']" +gimmaru/github-issues,gimmaru,"['arxiv.org/abs/2005.00614', 'doi.org/</span>),', 'bibtex']" +irds/wikiclir_tr,irds,['bibtex'] +irds/cord19,irds,[{'title': 'CORD-19: The Covid-19 Open Research Dataset'}] +irds/beir_quora_dev,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/mmarco_es_dev,irds,[{'title': '{mMARCO'}] +irds/clueweb12_touche-2020-task-2,irds,['bibtex'] +irds/clueweb12_b13_clef-ehealth_fr,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +irds/mmarco_v2_es,irds,[{'title': '{mMARCO'}] +irds/lotte_technology_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/disks45_nocr_trec-robust-2004_fold4,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +chcaa/dagw-word-frequencies-by-domain-with-pos-tags,chcaa,['arxiv.org/abs/2005.03521'] +irds/mr-tydi_th_test,irds,[{'title': '{Mr. TyDi'}] +irds/gov2_trec-tb-2006,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +irds/mr-tydi_fi,irds,[{'title': '{Mr. TyDi'}] +nealmgkr/tminer_hs,nealmgkr,[{'title': 'T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification'}] +omar-sharif/BAD-Bengali-Aggressive-Text-Dataset,omar-sharif,"['doi.org/10.1016/j.neucom.2021.12.022},', {'title': 'Tackling Cyber-Aggression: Identification and Fine-Grained Categorization of Aggressive Texts on Social Media using Weighted Ensemble of Transformers'}]" +irds/lotte_science_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +djghosh/wds_vtab-pcam_test,djghosh,['arxiv.org/abs/1806.03962'] +irds/disks45_nocr_trec-robust-2004_fold1,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +WillHeld/demszky_pairs,WillHeld,[{'title': 'Learning to Recognize Dialect Features'}] +laion/filtered-wit,laion,['arxiv.org/abs/2103.00020'] +sled-umich/Action-Effect,sled-umich,['bibtex'] +unicamp-dl/mrobust,unicamp-dl,"['arxiv.org/abs/2108.13897', 'doi.org/10.48550/arxiv.2209.13738,']" +irds/mmarco_v2_es_train,irds,[{'title': '{mMARCO'}] +irds/nyt_wksup_train,irds,['bibtex'] +conceptofmind/pile_hacker_news,conceptofmind,['arxiv.org/abs/2101.00027'] +irds/beir_climate-fever,irds,"['arxiv.org/abs/2104.08663', {'title': 'CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims'}]" +irds/mmarco_pt_train_v1.1,irds,[{'title': '{mMARCO'}] +irds/clueweb12_b13_ntcir-www-1,irds,[{'title': 'Overview of the NTCIR-13 We Want Web Task'}] +irds/lotte_writing_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_msmarco_train,irds,"['arxiv.org/abs/2104.08663', {'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}]" +djghosh/wds_objectnet_test,djghosh,['bibtex'] +irds/medline_2004_trec-genomics-2005,irds,[{'title': 'TREC 2005 Genomics Track Overview'}] +irds/beir_fiqa_test,irds,"['arxiv.org/abs/2104.08663', {'title': ""WWW'18 Open Challenge: Financial Opinion Mining and Question Answering""}]" +piuba-bigdata/contextualized_hate_speech,piuba-bigdata,"['arxiv.org/abs/2210.00465', {'title': 'Assessing the impact of contextual information in hate speech detection'}]" +irds/mr-tydi_bn,irds,[{'title': '{Mr. TyDi'}] +irds/lotte_recreation_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +conceptofmind/pile_uspto_backgrounds,conceptofmind,['arxiv.org/abs/2101.00027'] +irds/lotte_writing_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/nfcorpus_train_nontopic,irds,['bibtex'] +irds/mmarco_v2_es_dev,irds,[{'title': '{mMARCO'}] +irds/disks45_nocr_trec-robust-2004_fold3,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +webnlg/challenge-2023,webnlg,"['doi.org/10.18653/v1/P17-1017},', 'bibtex']" +irds/gov_trec-web-2004,irds,[{'title': 'Overview of the TREC-2004 Web Track'}] +irds/gov2_trec-tb-2006_efficiency_stream1,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +irds/beir_arguana,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/lotte_lifestyle_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/gov2_trec-tb-2006_efficiency_stream2,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +irds/msmarco-document_trec-dl-hard_fold3,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/wikiclir_pl,irds,['bibtex'] +djghosh/wds_vtab-eurosat_test,djghosh,"['arxiv.org/abs/1709.00029', {'title': 'Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification'}]" +qanastek/Biosses-BLUE,qanastek,"['doi.org/10.1093/bioinformatics/btx238},', 'bibtex']" +irds/mmarco_v2_ar_train,irds,[{'title': '{mMARCO'}] +mrm8488/goemotions,mrm8488,"['arxiv.org/abs/2005.00547', 'bibtex']" +irds/msmarco-passage_dev,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +society-ethics/BlogPostBias,society-ethics,"['arxiv.org/abs/2203.07785', 'doi.org/10.57967/hf/0214},', 'bibtex']" +irds/nfcorpus_test_video,irds,['bibtex'] +irds/mr-tydi_ru_test,irds,[{'title': '{Mr. TyDi'}] +irds/highwire_trec-genomics-2006,irds,[{'title': 'TREC 2006 Genomics Track Overview'}] +irds/beir_webis-touche2020_v2,irds,"['arxiv.org/abs/2104.08663', {'title': ""Overview of Touch{\\'e""}]" +huggan/facades,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +irds/wikiclir_fr,irds,['bibtex'] +irds/kilt_codec_politics,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +irds/lotte_writing_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +LRGB/coco_superpixels_edge_wt_only_coord_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +drAbreu/sd-nlp-2,drAbreu,['doi.org/10.1038/nmeth.4471).'] +winfried/gnn_bvp_solver,winfried,['arxiv.org/abs/2206.14092'] +irds/wikir_ens78k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +huggan/ukiyoe2photo,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +irds/lotte_writing_dev_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_msmarco_dev,irds,"['arxiv.org/abs/2104.08663', {'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}]" +irds/tweets2013-ia,irds,"[{'title': 'Finally, a Downloadable Test Collection of Tweets'}]" +SauravMaheshkar/tox21_SRp53,SauravMaheshkar,"['arxiv.org/abs/1703.00564', 'doi.org/10.48550/arxiv.1703.00564,']" +irds/gov_trec-web-2003,irds,[{'title': 'Overview of the TREC 2003 Web Track'}] +irds/codesearchnet_test,irds,[{'title': 'CodeSearchNet Challenge: Evaluating the State of Semantic Code Search'}] +LRGB/coco_superpixels_edge_wt_coord_feat_10,LRGB,[{'title': 'Long Range Graph Benchmark'}] +dianalogan/Marketing-Budget-and-Actual-Sales-Dataset,dianalogan,[{'title': '{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification'}] +irds/msmarco-document,irds,[{'title': 'MS MARCO: A Human Generated MAchine Reading COmprehension Dataset'}] +Fhrozen/dcase22_task3,Fhrozen,"['doi.org/10.5281/zenodo.4064792),']" +irds/wikir_es13k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +irds/mmarco_es_train,irds,[{'title': '{mMARCO'}] +irds/pmc_v1_trec-cds-2015,irds,[{'title': 'Overview of the TREC 2015 Clinical Decision Support Track'}] +irds/wikiclir_it,irds,['bibtex'] +irds/pmc_v2_trec-cds-2016,irds,[{'title': 'Overview of the TREC 2016 Clinical Decision Support Track'}] +irds/mr-tydi_bn_test,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_de_train,irds,[{'title': '{mMARCO'}] +irds/mr-tydi_en_test,irds,[{'title': '{Mr. TyDi'}] +LRGB/coco_superpixels_edge_wt_only_feat_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +djghosh/wds_vtab-dmlab_test,djghosh,"['arxiv.org/abs/1910.04867', {'title': 'The Visual Task Adaptation Benchmark'}]" +irds/wikiclir_vi,irds,['bibtex'] +irds/mmarco_v2_fr_train,irds,[{'title': '{mMARCO'}] +irds/clinicaltrials_2019_trec-pm-2019,irds,[{'title': 'Overview of the TREC 2019 Precision Medicine Track'}] +irds/codesearchnet_challenge,irds,[{'title': 'CodeSearchNet Challenge: Evaluating the State of Semantic Code Search'}] +irds/trec-robust04_fold4,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +irds/mmarco_pt_train,irds,[{'title': '{mMARCO'}] +ICML2022/EfficientDatasetCondensation,ICML2022,[{'title': 'Dataset Condensation via Efficient Synthetic-Data Parameterization'}] +irds/trec-cast_v0,irds,[{'title': 'CAsT 2019: The Conversational Assistance Track Overview'}] +irds/gov_trec-web-2003_named-page,irds,[{'title': 'Overview of the TREC 2003 Web Track'}] +irds/mmarco_v2_ar_dev,irds,[{'title': '{mMARCO'}] +irds/mmarco_v2_id,irds,[{'title': '{mMARCO'}] +irds/beir_nq,irds,"['arxiv.org/abs/2104.08663', {'title': 'Natural Questions: a Benchmark for Question Answering Research'}]" +taesiri/GamePhysics,taesiri,['arxiv.org/abs/2203.11096'] +irds/trec-mandarin_trec6,irds,[{'title': 'Chinese Document Retrieval at TREC-6'}] +graphs-datasets/MD17-ethanol,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +irds/mmarco_v2_ar,irds,[{'title': '{mMARCO'}] +djghosh/wds_vtab-clevr_closest_object_distance_test,djghosh,"['arxiv.org/abs/1612.06890', 'bibtex']" +irds/trec-cast_v1_2020_judged,irds,[{'title': 'CAsT 2020: The Conversational Assistance Track Overview'}] +EMBO/sd-character-level-ner,EMBO,['doi.org/10.1038/nmeth.4471).'] +djghosh/wds_gtsrb_test,djghosh,"['doi.org/10.1016/j.neunet.2012.02.016)', 'bibtex']" +irds/mmarco_v2_zh_dev,irds,[{'title': '{mMARCO'}] +rajeshradhakrishnan/malayalam_news,rajeshradhakrishnan,[{'title': 'AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages'}] +irds/hc4_zh,irds,"['arxiv.org/abs/2201.09992', 'bibtex']" +irds/wikiclir_ca,irds,['bibtex'] +irds/mmarco_v2_zh_train,irds,[{'title': '{mMARCO'}] +djghosh/wds_vtab-svhn_test,djghosh,[{'title': 'Reading Digits in Natural Images with Unsupervised Feature Learning'}] +irds/mr-tydi_ko_train,irds,[{'title': '{Mr. TyDi'}] +irds/wikir_en1k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +irds/gov2_trec-tb-2006_efficiency_stream4,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +conceptofmind/pile_dm_mathematics,conceptofmind,['arxiv.org/abs/2101.00027'] +irds/msmarco-document_trec-dl-hard_fold5,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/antique_train_split200-train,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +irds/mmarco_pt_dev_small,irds,[{'title': '{mMARCO'}] +irds/tripclick_train_head,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +irds/mmarco_pt_dev,irds,[{'title': '{mMARCO'}] +cemachelen/LIFD_Magnetic_Field_Data,cemachelen,['doi.org/10.1098/rsta.2000.0569](https://royalsocietypublishing.org/doi/10.1098/rsta.2000.0569)'] +irds/wikiclir_cs,irds,['bibtex'] +irds/clinicaltrials_2017_trec-pm-2018,irds,[{'title': 'Overview of the TREC 2018 Precision Medicine Track'}] +ryanxingql/MFQEv2,ryanxingql,"['arxiv.org/abs/1902.09707', 'doi.org/10.1109%2Ftpami.2019.2944806},', {'doi': '10.1109/tpami.2019.2944806'}]" +irds/gov2_trec-tb-2006_named-page,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +xuyeliu/notebookCDG,xuyeliu,['arxiv.org/abs/2104.01002'] +irds/beir_msmarco_test,irds,"['arxiv.org/abs/2104.08663', {'title': 'Overview of the TREC 2019 deep learning track'}]" +irds/mmarco_fr_dev,irds,[{'title': '{mMARCO'}] +irds/wikiclir_no,irds,['bibtex'] +irds/lotte_pooled_dev_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +graphs-datasets/MD17-aspirin,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +irds/lotte_science_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_hotpotqa_train,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +graphs-datasets/MD17-salicylic_acid,graphs-datasets,"['doi.org/10.1126%2Fsciadv.1603015},', {'title': 'TUDataset: A collection of benchmark datasets for learning with graphs'}]" +irds/trec-robust04_fold2,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +irds/lotte_technology_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +LRGB/coco_superpixels_edge_wt_region_boundary_30,LRGB,[{'title': 'Long Range Graph Benchmark'}] +irds/beir_nfcorpus_dev,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/clueweb12_touche-2022-task-2_expanded-doc-t5-query,irds,['bibtex'] +irds/msmarco-passage_trec-dl-hard_fold5,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/beir_hotpotqa_dev,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/mr-tydi_th,irds,[{'title': '{Mr. TyDi'}] +uva-irlab/canard_quretec,uva-irlab,['arxiv.org/abs/2005.11723'] +LRGB/PCQM-Contact,LRGB,[{'title': 'Long Range Graph Benchmark'}] +irds/nfcorpus_dev_nontopic,irds,['bibtex'] +irds/antique_train,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +simeneide/recsys_slates_dataset,simeneide,"['arxiv.org/abs/2104.15046', 'doi.org/10.1007/s10618-022-00849-w']" +irds/highwire_trec-genomics-2007,irds,[{'title': 'TREC 2007 Genomics Track Overview'}] +sshleifer/pseudo_bart_xsum,sshleifer,"[{'title': ""Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization""}]" +irds/codec_politics,irds,[{'title': 'CODEC: Complex Document and Entity Collection'}] +SberDevices/Golos,SberDevices,['arxiv.org/abs/2106.10161'] +amitdanin/s3_spyder,amitdanin,[{'title': 'Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task'}] +irds/mr-tydi_ko_dev,irds,[{'title': '{Mr. TyDi'}] +irds/gov2_trec-tb-2004,irds,[{'title': 'Overview of the TREC 2004 Terabyte Track'}] +irds/beir_fever,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/gov2_trec-tb-2005,irds,[{'title': 'The TREC 2005 Terabyte Track'}] +irds/mr-tydi_ar_train,irds,[{'title': '{Mr. TyDi'}] +irds/antique_test_non-offensive,irds,[{'title': 'ANTIQUE: A Non-Factoid Question Answering Benchmark'}] +irds/mr-tydi_ja_test,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_v2_vi,irds,[{'title': '{mMARCO'}] +antoinelb7/alloprof,antoinelb7,['arxiv.org/abs/2302.07738'] +irds/mmarco_v2_pt_train,irds,[{'title': '{mMARCO'}] +irds/tweets2013-ia_trec-mb-2013,irds,[{'title': 'Overview of the TREC-2013 Microblog Track'}] +irds/lotte_recreation_test_forum,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mr-tydi_ko,irds,[{'title': '{Mr. TyDi'}] +irds/trec-robust04_fold1,irds,[{'title': 'Overview of the TREC 2004 Robust Retrieval Track'}] +djghosh/wds_vtab-clevr_count_all_test,djghosh,"['arxiv.org/abs/1612.06890', 'bibtex']" +irds/beir_fiqa,irds,"['arxiv.org/abs/2104.08663', {'title': ""WWW'18 Open Challenge: Financial Opinion Mining and Question Answering""}]" +irds/mmarco_v2_ja_train,irds,[{'title': '{mMARCO'}] +irds/lotte_pooled_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/mmarco_v2_fr_dev,irds,[{'title': '{mMARCO'}] +irds/gov2_trec-tb-2006_efficiency_10k,irds,[{'title': 'The TREC 2006 Terabyte Track'}] +irds/wikiclir_sw,irds,['bibtex'] +irds/mmarco_id_dev,irds,[{'title': '{mMARCO'}] +irds/mmarco_ru,irds,[{'title': '{mMARCO'}] +irds/nfcorpus_dev_video,irds,['bibtex'] +irds/mmarco_v2_ja_dev,irds,[{'title': '{mMARCO'}] +irds/msmarco-document_trec-dl-hard_fold2,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/msmarco-passage_trec-dl-hard_fold2,irds,[{'title': 'How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset'}] +irds/argsme_2020-04-01_processed_touche-2022-task-1,irds,['bibtex'] +irds/lotte_science_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_webis-touche2020,irds,"['arxiv.org/abs/2104.08663', {'title': ""Overview of Touch{\\'e""}]" +Leyo/TGIF,Leyo,['arxiv.org/abs/1604.02748'] +irds/mr-tydi_ru_dev,irds,[{'title': '{Mr. TyDi'}] +irds/tripclick_train,irds,[{'title': 'TripClick: The Log Files of a Large Health Web Search Engine'}] +djaym7/wiki_dialog_mlm,djaym7,['arxiv.org/abs/2205.09073'] +irds/cord19_trec-covid_round3,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +irds/clueweb12_b13_clef-ehealth_de,irds,[{'title': 'The IR Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information Retrieval'}] +irds/cord19_trec-covid_round4,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +irds/beir_nfcorpus_train,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/lotte_recreation_test,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +huggan/cezanne2photo,huggan,"['arxiv.org/abs/1703.10593', 'bibtex']" +irds/beir_scifact_train,irds,"['arxiv.org/abs/2104.08663', 'bibtex']" +irds/lotte_recreation_dev,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +irds/beir_dbpedia-entity,irds,"['arxiv.org/abs/2104.08663', {'title': 'DBpedia-Entity v2: A Test Collection for Entity Search'}]" +irds/mmarco_pt,irds,[{'title': '{mMARCO'}] +sustcsenlp/bn_news_summarization,sustcsenlp,['doi.org/10.1007/978-981-33-4673-4_4)'] +irds/mmarco_fr,irds,[{'title': '{mMARCO'}] +irds/wikiclir_nl,irds,['bibtex'] +djghosh/wds_food101_test,djghosh,[{'title': 'Food-101 -- Mining Discriminative Components with Random Forests'}] +irds/cord19_fulltext_trec-covid,irds,[{'title': 'TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection'}] +s-nlp/ru_paradetox,s-nlp,[{'title': 'RUSSE-2022: Findings of the First Russian Detoxification Shared Task Based on Parallel Corpora'}] +irds/wikir_en78k,irds,[{'title': 'WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset'}] +irds/lotte_writing_test_search,irds,"['arxiv.org/abs/2112.01488', 'bibtex']" +dmargutierrez/Babelscape-wikineural-joined,dmargutierrez,['bibtex'] +irds/mr-tydi_ko_test,irds,[{'title': '{Mr. TyDi'}] +irds/mmarco_v2_vi_train,irds,[{'title': '{mMARCO'}]