File size: 4,718 Bytes
d30dc7a 0ab2471 d30dc7a 1630c99 d30dc7a 2af9cc3 d30dc7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: mit
datasets:
- financial-fraud-detection
language:
- en
metrics:
- auc
- accuracy
- f1
- precision
- recall
base_model:
- "None"
library_name: onnx
pipeline_tag: fraud-detection
tags:
- fraud-detection
- ensemble
- financial-security
- onnx
- xgboost
- lightgbm
- catboost
- random-forest
- production
- cybersecurity
- mlops
- real-time-inference
- deployed
model-index:
- name: Fraud Detection Ensemble ONNX
results:
- task:
name: Fraud Detection
type: fraud-detection
dataset:
name: CREDIT CARD fraud detection credit card.csv
type: tabular
metrics:
- type: auc
value: 0.9998
- type: accuracy
value: 0.9942
- type: f1
value: 0.9756
- type: precision
value: 0.9813
- type: recall
value: 0.9701
new_version: "true"
---
# π‘οΈ Fraud Detection Ensemble Suite - ONNX Format
**Author:** [darkknight25](https://huggingface.co/darkknight25)
**Models:** XGBoost, LightGBM, CatBoost, Random Forest, Meta Learner
**Format:** ONNX for production-ready deployment
**Tags:** `fraud-detection`, `onnx`, `ensemble`, `real-world`, `ml`, `lightweight`, `financial-security`
---
## π Overview
This repository provides a high-performance **fraud detection ensemble** trained on real-world financial datasets and exported in **ONNX format** for lightning-fast inference.
Each model is optimized for different fraud signals and then blended via a **meta-model** for enhanced generalization.
---
## π― Real-World Use Cases
β
Credit card fraud detection
β
Transaction monitoring systems
β
Risk scoring engines
β
Insurance fraud
β
Online payment gateways
β
Embedded or edge deployments using ONNX
---
## π§ Models Included
| Model | Format | Status | Notes |
|---------------|--------|------------|----------------------------------------|
| XGBoost | ONNX | β
Ready | Best for handling imbalanced data |
| LightGBM | ONNX | β
Ready | Fast, efficient gradient boosting |
| CatBoost | ONNX | β
Ready | Handles categorical features well |
| RandomForest | ONNX | β
Ready | Stable classical ensemble |
| Meta Model | ONNX | β
Ready | Trained on outputs of above models |
---
## π§Ύ Feature Schema
`feature_names.json` contains the exact input features expected by all models.
You must preprocess data to match this schema before ONNX inference.
```json
["amount", "time", "is_foreign", "txn_type", ..., "ratio_to_median_purchase_price"]
```
Shape: (None, 29)
Dtype: float32
```java
import onnxruntime as ort
import numpy as np
import json
# Load feature schema
with open("feature_names.json") as f:
feature_names = json.load(f)
# Dummy input (replace with your real preprocessed data)
X = np.random.rand(1, len(feature_names)).astype(np.float32)
# Load ONNX model
session = ort.InferenceSession("xgb_model.onnx", providers=["CPUExecutionProvider"])
# Inference
input_name = session.get_inputs()[0].name
output = session.run(None, {input_name: X})
print("Fraud probability:", output[0])
```
# Example Inference Code:
```java
import onnxruntime as ort
import numpy as np
session = ort.InferenceSession("meta_model.onnx")
input_data = np.array([[...]], dtype=np.float32) # shape (1, 29)
inputs = {session.get_inputs()[0].name: input_data}
outputs = session.run(None, inputs)
print("Fraud Probability:", outputs[0])
```
π§ͺ Training Pipeline
All models were trained using the following:
β
Stratified train/test split
β
StandardScaler normalization
β
Log loss and AUC optimization
β
Early stopping and feature importance
β
Light-weight autoencoder anomaly filter (not included here)
π Security Focus
Ensemble modeling reduces false positives and model drift.
Models are robust against outliers and data shifts.
TFLite autoencoder (optional) can detect unknown fraud patterns.
π Files
```Java
models/
βββ xgb_model.onnx
βββ lgb_model.onnx
βββ cat_model.onnx
βββ rf_model.onnx
βββ meta_model.onnx
βββ feature_names.json
```
π οΈ Advanced Users
Easily convert ONNX to TFLite, TensorRT, or CoreML.
Deploy via FastAPI, Flask, Streamlit, or ONNX runtime on edge devices.
π€ License
MIT License. You are free to use, modify, and deploy with attribution.
π Author
Made with β€οΈ by darkknight25,SUNNYTHAKUR
Contact for enterprise deployments, smart contract forensics, or advanced ML pipelines |