--- license: mit language: - ko - en base_model: - microsoft/trocr-base-handwritten pipeline_tag: image-to-text tags: - HandWritten - OCR - Mathmatics --- # πŸ“„ Easy OCR Tool This tool is designed to easily convert images and scanned documents into editable text using Optical Character Recognition (OCR). Using [fhswf/TrOCR_Math_handwritten](https://huggingface.co/fhswf/TrOCR_Math_handwritten) Model [πŸ‡°πŸ‡· (kr)ν•œκ΅­μ–΄λ‘œ 보기](README_kr.md) My [github link](https://github.com/HanyangChan/Easy-to-use-OCR-Handwritten-Mathmatics) ### Input Hand-Written images ![70_miguel](https://github.com/user-attachments/assets/353552f1-6791-48f8-862c-834d8aeeb990) ### Output ``` cos\theta=\frac{x}{\sqrt{x^{2}+y^{2}}} ``` ![latex_output](https://github.com/user-attachments/assets/eb36d27a-f247-4848-b922-1b67fb6bee91) ### Input Hand-Written images ![Image](https://github.com/user-attachments/assets/462cd86c-b884-4c60-addd-c6593d1659f1) ### Output ``` e^{i\pi}+1=0. ``` ![Image](https://github.com/user-attachments/assets/373f8046-da29-46d4-8e95-c7547c0b5196) ## ✨ Features - βœ… Simple drag-and-drop interface. - πŸ“· Supports multiple image formats. - ⚑ Quick and accurate text extraction. ## πŸ”§ Installation -MacTex: If you're on macOS, you'll need to install MacTeX. ``` brew install --cask mactex ``` * **Windows:** Install [MiKTeX](https://miktex.org/download) or [TeX Live](https://www.tug.org/texlive/acquire-iso.html). Follow their respective installation guides. -Python Dependencies ``` pip install torch torchvision torchaudio ``` ## πŸš€ Getting Started 1. Copy and put your image file path. 2. Click the Run. 3. Download the extracted text! ## Reference **Model:** TrOCR_Math_handwritten by fhswf License: afl-3.0 **Paper:** Li, M., Lv, T., Cui, L., Lu, Y., Florencio, D., Zhang, C., Li, Z., & Wei, F. (2021). TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models. arXiv preprint arXiv:2109.10282. **BibTeX:** ``` text @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ---