Update README.md
Browse files
README.md
CHANGED
|
@@ -11,6 +11,34 @@ pipeline_tag: text-classification
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
+
```python
|
| 15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 16 |
+
|
| 17 |
+
device = "cuda" # the device to load the model onto
|
| 18 |
+
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained("armaniii/llama-argument-classification")
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("armaniii/lllama-argument-classification")
|
| 21 |
+
|
| 22 |
+
model.to(device)
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
for batch in tqdm.tqdm(data):
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
input_text = tokenizer(batch, padding=True, truncation=True,max_length=2048,return_tensors="pt").to(device)
|
| 28 |
+
output = model(**input_text)
|
| 29 |
+
logits = output.logits
|
| 30 |
+
predicted_class = torch.argmax(logits, dim=1)
|
| 31 |
+
# Convert logits to a list of predicted labels
|
| 32 |
+
predictions.extend(predicted_class.cpu().tolist())
|
| 33 |
+
|
| 34 |
+
# Get the ground truth labels
|
| 35 |
+
df["predictions"] = predictions
|
| 36 |
+
|
| 37 |
+
num2label = {
|
| 38 |
+
0:"NoArgument",
|
| 39 |
+
1:"Argument"
|
| 40 |
+
}
|
| 41 |
+
```
|
| 42 |
### Model Description
|
| 43 |
|
| 44 |
<!-- Provide a longer summary of what this model is. -->
|