File size: 5,225 Bytes
b69da5b 3aabb07 b69da5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
license: apache-2.0
language:
- en
- es
- fr
- de
- it
- pt
- ru
- ar
- hi
- ko
- zh
library_name: transformers
base_model:
- arcee-ai/Trinity-Mini-Base
---
<div align="center">
<picture>
<img
src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/i-v1KyAMOW_mgVGeic9WJ.png"
alt="Arcee Trinity Mini"
style="max-width: 100%; height: auto;"
>
</picture>
</div>
# Trinity Mini
Trinity Mini is an Arcee AI 26B MoE model with 3B active parameters. It is the medium-sized model in our new Trinity family, a series of open-weight models for enterprise and tinkerers alike.
This model is tuned for reasoning, but in testing, it uses a similar total token count to competitive instruction-tuned models.
***
Trinity Mini is trained on 10T tokens gathered and curated through a key partnership with [Datology](https://www.datologyai.com/), building upon the excellent dataset we used on [AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B) with additional math and code.
Training was performed on a cluster of 512 H200 GPUs powered by [Prime Intellect](https://www.primeintellect.ai/) using HSDP parallelism.
More details, including key architecture decisions, can be found on our blog [here](https://www.arcee.ai/blog/the-trinity-manifesto)
Try it out now at [chat.arcee.ai](http://chat.arcee.ai/)
***
## Model Details
* **Model Architecture:** AfmoeForCausalLM
* **Parameters:** 26B, 3B active
* **Experts:** 128 total, 8 active, 1 shared
* **Context length:** 128k
* **Training Tokens:** 10T
* **License:** [Apache 2.0](https://huggingface.co/arcee-ai/Trinity-Mini#license)
* **Recommended settings:**
* temperature: 0.15
* top_k: 50
* top_p: 0.75
* min_p: 0.06
***
## Benchmarks

<div align="center">
<picture>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/sSVjGNHfrJKmQ6w8I18ek.png" style="background-color:ghostwhite;padding:5px;" width="17%" alt="Powered by Datology">
</picture>
</div>
### Running our model
- [Transformers](https://huggingface.co/arcee-ai/Trinity-Mini#transformers)
- [VLLM](https://huggingface.co/arcee-ai/Trinity-Mini#vllm)
- [llama.cpp](https://huggingface.co/arcee-ai/Trinity-Mini#llamacpp)
- [LM Studio](https://huggingface.co/arcee-ai/Trinity-Mini#lm-studio)
- [API](https://huggingface.co/arcee-ai/Trinity-Mini#api)
## Transformers
Use the `main` transformers branch
```
git clone https://github.com/huggingface/transformers.git
cd transformers
# pip
pip install '.[torch]'
# uv
uv pip install '.[torch]'
```
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "arcee-ai/Trinity-Mini"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
messages = [
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.5,
top_k=50,
top_p=0.95
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
If using a released transformers, simply pass "trust_remote_code=True":
```python
model_id = "arcee-ai/Trinity-Mini"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
```
## VLLM
Supported in VLLM release 0.11.1
```
# pip
pip install "vllm>=0.11.1"
```
Serving the model with suggested settings:
```
vllm serve arcee-train/Trinity-Mini \
--dtype bfloat16 \
--enable-auto-tool-choice \
--reasoning-parser deepseek_r1 \
--tool-call-parser hermes
```
## llama.cpp
Supported in llama.cpp release b7061
Download the latest [llama.cpp release](https://github.com/ggml-org/llama.cpp/releases)
```
llama-server -hf arcee-ai/Trinity-Mini-GGUF:q4_k_m \
--temp 0.15 \
--top-k 50 \
--top-p 0.75
--min-p 0.06
```
## LM Studio
Supported in latest LM Studio runtime
Update to latest available, then verify your runtime by:
1. Click "Power User" at the bottom left
2. Click the green "Developer" icon at the top left
3. Select "LM Runtimes" at the top
4. Refresh the list of runtimes and verify that the latest is installed
Then, go to Model Search and search for `arcee-ai/Trinity-Mini-GGUF`, download your prefered size, and load it up in the chat
## API
Trinity Mini is available today on openrouter:
https://openrouter.ai/arcee-ai/trinity-mini
```
curl -X POST "https://openrouter.ai/v1/chat/completions" \
-H "Authorization: Bearer $OPENROUTER_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "arcee-ai/trinity-mini",
"messages": [
{
"role": "user",
"content": "What are some fun things to do in New York?"
}
]
}'
```
## License
Trinity-Mini is released under the Apache-2.0 license. |