File size: 5,225 Bytes
b69da5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aabb07
b69da5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
license: apache-2.0
language:
- en
- es
- fr
- de
- it
- pt
- ru
- ar
- hi
- ko
- zh
library_name: transformers
base_model:
- arcee-ai/Trinity-Mini-Base
---
<div align="center">
  <picture>
    <img
      src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/i-v1KyAMOW_mgVGeic9WJ.png"
      alt="Arcee Trinity Mini"
      style="max-width: 100%; height: auto;"
    >
  </picture>
</div>

# Trinity Mini

Trinity Mini is an Arcee AI 26B MoE model with 3B active parameters. It is the medium-sized model in our new Trinity family, a series of open-weight models for enterprise and tinkerers alike.

This model is tuned for reasoning, but in testing, it uses a similar total token count to competitive instruction-tuned models.

***

Trinity Mini is trained on 10T tokens gathered and curated through a key partnership with [Datology](https://www.datologyai.com/), building upon the excellent dataset we used on [AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B) with additional math and code.

Training was performed on a cluster of 512 H200 GPUs powered by [Prime Intellect](https://www.primeintellect.ai/) using HSDP parallelism.

More details, including key architecture decisions, can be found on our blog [here](https://www.arcee.ai/blog/the-trinity-manifesto)

Try it out now at [chat.arcee.ai](http://chat.arcee.ai/)

***

## Model Details

* **Model Architecture:** AfmoeForCausalLM
* **Parameters:** 26B, 3B active
* **Experts:** 128 total, 8 active, 1 shared
* **Context length:** 128k
* **Training Tokens:** 10T
* **License:** [Apache 2.0](https://huggingface.co/arcee-ai/Trinity-Mini#license)
* **Recommended settings:**
    * temperature: 0.15
    * top_k: 50
    * top_p: 0.75
    * min_p: 0.06

***

## Benchmarks

![](https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/UMV0OZh_H1JfvgzBTXh6u.png)

<div align="center">
  <picture>
      <img src="https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/sSVjGNHfrJKmQ6w8I18ek.png" style="background-color:ghostwhite;padding:5px;" width="17%" alt="Powered by Datology">
  </picture>
</div>

### Running our model

- [Transformers](https://huggingface.co/arcee-ai/Trinity-Mini#transformers)
- [VLLM](https://huggingface.co/arcee-ai/Trinity-Mini#vllm)
- [llama.cpp](https://huggingface.co/arcee-ai/Trinity-Mini#llamacpp)
- [LM Studio](https://huggingface.co/arcee-ai/Trinity-Mini#lm-studio)
- [API](https://huggingface.co/arcee-ai/Trinity-Mini#api)

## Transformers

Use the `main` transformers branch

```
git clone https://github.com/huggingface/transformers.git
cd transformers

# pip
pip install '.[torch]'

# uv
uv pip install '.[torch]'
```

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "arcee-ai/Trinity-Mini"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

messages = [
    {"role": "user", "content": "Who are you?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.5,
    top_k=50,
    top_p=0.95
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

If using a released transformers, simply pass "trust_remote_code=True":

```python
model_id = "arcee-ai/Trinity-Mini"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)
```

## VLLM

Supported in VLLM release 0.11.1

```
# pip
pip install "vllm>=0.11.1"
```

Serving the model with suggested settings:

```
vllm serve arcee-train/Trinity-Mini \
  --dtype bfloat16 \
  --enable-auto-tool-choice \
  --reasoning-parser deepseek_r1 \
  --tool-call-parser hermes
```

## llama.cpp

Supported in llama.cpp release b7061

Download the latest [llama.cpp release](https://github.com/ggml-org/llama.cpp/releases)

```
llama-server -hf arcee-ai/Trinity-Mini-GGUF:q4_k_m \
  --temp 0.15 \
  --top-k 50 \
  --top-p 0.75
  --min-p 0.06
```

## LM Studio

Supported in latest LM Studio runtime

Update to latest available, then verify your runtime by:

1. Click "Power User" at the bottom left
2. Click the green "Developer" icon at the top left
3. Select "LM Runtimes" at the top
4. Refresh the list of runtimes and verify that the latest is installed

Then, go to Model Search and search for `arcee-ai/Trinity-Mini-GGUF`, download your prefered size, and load it up in the chat

## API

Trinity Mini is available today on openrouter:

https://openrouter.ai/arcee-ai/trinity-mini

```
curl -X POST "https://openrouter.ai/v1/chat/completions" \
  -H "Authorization: Bearer $OPENROUTER_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "arcee-ai/trinity-mini",
    "messages": [
      {
        "role": "user",
        "content": "What are some fun things to do in New York?"
      }
    ]
  }'
```

## License

Trinity-Mini is released under the Apache-2.0 license.