Delete securewealth_transmittor.py
Browse files- securewealth_transmittor.py +0 -257
securewealth_transmittor.py
DELETED
|
@@ -1,257 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
|
| 4 |
-
# Define a simple neural network to generate random frequencies
|
| 5 |
-
class FrequencyMaskingNet(nn.Module):
|
| 6 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 7 |
-
super(FrequencyMaskingNet, self).__init__()
|
| 8 |
-
|
| 9 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 10 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 11 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 12 |
-
self.relu = nn.ReLU()
|
| 13 |
-
|
| 14 |
-
def forward(self, x):
|
| 15 |
-
x = self.relu(self.fc1(x))
|
| 16 |
-
x = self.relu(self.fc2(x))
|
| 17 |
-
x = self.fc3(x)
|
| 18 |
-
return x
|
| 19 |
-
|
| 20 |
-
# Function to create random frequencies to mask IP data
|
| 21 |
-
def generate_frequencies(ip, model, iterations=100):
|
| 22 |
-
# Convert the IP address (dummy) into tensor format
|
| 23 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
| 24 |
-
|
| 25 |
-
# Create a list to store frequency signals
|
| 26 |
-
frequencies = []
|
| 27 |
-
|
| 28 |
-
# Iterate and generate frequencies using the neural network
|
| 29 |
-
for _ in range(iterations):
|
| 30 |
-
# Generate a masked frequency
|
| 31 |
-
frequency = model(ip_tensor)
|
| 32 |
-
frequencies.append(frequency.item())
|
| 33 |
-
|
| 34 |
-
return frequencies
|
| 35 |
-
|
| 36 |
-
# Initialize the neural network
|
| 37 |
-
model = FrequencyMaskingNet()
|
| 38 |
-
|
| 39 |
-
# Example IP address to be masked (as a float for simplicity, convert if needed)
|
| 40 |
-
ip_address = 192.168 # Example, could use a different encoding for real IPs
|
| 41 |
-
|
| 42 |
-
# Generate pseudo-random frequencies to mask the IP
|
| 43 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
| 44 |
-
|
| 45 |
-
print(masked_frequencies)
|
| 46 |
-
|
| 47 |
-
import torch
|
| 48 |
-
import torch.nn as nn
|
| 49 |
-
import matplotlib.pyplot as plt
|
| 50 |
-
|
| 51 |
-
# Define the neural network for generating pseudo-random frequencies
|
| 52 |
-
class FrequencyMaskingNet(nn.Module):
|
| 53 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 54 |
-
super(FrequencyMaskingNet, self).__init__()
|
| 55 |
-
|
| 56 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 57 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 58 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 59 |
-
self.relu = nn.ReLU()
|
| 60 |
-
|
| 61 |
-
def forward(self, x):
|
| 62 |
-
x = self.relu(self.fc1(x))
|
| 63 |
-
x = self.relu(self.fc2(x))
|
| 64 |
-
x = self.fc3(x)
|
| 65 |
-
return x
|
| 66 |
-
|
| 67 |
-
# Function to create random frequencies to mask IP data
|
| 68 |
-
def generate_frequencies(ip, model, iterations=100):
|
| 69 |
-
# Convert the IP address (dummy) into tensor format
|
| 70 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
| 71 |
-
|
| 72 |
-
# Create a list to store frequency signals
|
| 73 |
-
frequencies = []
|
| 74 |
-
|
| 75 |
-
# Iterate and generate frequencies using the neural network
|
| 76 |
-
for _ in range(iterations):
|
| 77 |
-
# Generate a masked frequency
|
| 78 |
-
frequency = model(ip_tensor)
|
| 79 |
-
frequencies.append(frequency.item())
|
| 80 |
-
|
| 81 |
-
return frequencies
|
| 82 |
-
|
| 83 |
-
# Function to visualize frequencies as a waveform
|
| 84 |
-
def plot_frequencies(frequencies):
|
| 85 |
-
plt.figure(figsize=(10, 4))
|
| 86 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
| 87 |
-
plt.title("Generated Frequency Waveform for IP Masking")
|
| 88 |
-
plt.xlabel("Iterations")
|
| 89 |
-
plt.ylabel("Frequency Amplitude")
|
| 90 |
-
plt.grid(True)
|
| 91 |
-
plt.legend()
|
| 92 |
-
plt.show()
|
| 93 |
-
|
| 94 |
-
# Initialize the neural network
|
| 95 |
-
model = FrequencyMaskingNet()
|
| 96 |
-
|
| 97 |
-
# Example IP address to be masked (as a float for simplicity)
|
| 98 |
-
ip_address = 192.168 # Example, you can encode the IP better in practice
|
| 99 |
-
|
| 100 |
-
# Generate pseudo-random frequencies to mask the IP
|
| 101 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
| 102 |
-
|
| 103 |
-
# Visualize the generated frequencies as a waveform
|
| 104 |
-
plot_frequencies(masked_frequencies)
|
| 105 |
-
|
| 106 |
-
import torch
|
| 107 |
-
import torch.nn as nn
|
| 108 |
-
import matplotlib.pyplot as plt
|
| 109 |
-
import numpy as np
|
| 110 |
-
|
| 111 |
-
# Define the neural network for generating pseudo-random frequencies
|
| 112 |
-
class FrequencyMaskingNet(nn.Module):
|
| 113 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 114 |
-
super(FrequencyMaskingNet, self).__init__()
|
| 115 |
-
|
| 116 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 117 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 118 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 119 |
-
self.relu = nn.ReLU()
|
| 120 |
-
|
| 121 |
-
def forward(self, x):
|
| 122 |
-
x = self.relu(self.fc1(x))
|
| 123 |
-
x = self.relu(self.fc2(x))
|
| 124 |
-
x = self.fc3(x)
|
| 125 |
-
return x
|
| 126 |
-
|
| 127 |
-
# Function to create random frequencies to mask IP data
|
| 128 |
-
def generate_frequencies(ip, model, iterations=100):
|
| 129 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
| 130 |
-
frequencies = []
|
| 131 |
-
|
| 132 |
-
for _ in range(iterations):
|
| 133 |
-
frequency = model(ip_tensor)
|
| 134 |
-
frequencies.append(frequency.item())
|
| 135 |
-
|
| 136 |
-
return frequencies
|
| 137 |
-
|
| 138 |
-
# Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
|
| 139 |
-
def generate_wealth_signal(iterations=100):
|
| 140 |
-
# Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
|
| 141 |
-
time = np.linspace(0, 10, iterations)
|
| 142 |
-
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
|
| 143 |
-
return wealth_signal
|
| 144 |
-
|
| 145 |
-
# Function to visualize frequencies as a waveform
|
| 146 |
-
def plot_frequencies(frequencies, wealth_signal):
|
| 147 |
-
plt.figure(figsize=(10, 4))
|
| 148 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
| 149 |
-
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
|
| 150 |
-
plt.title("Generated Frequency Waveform with Wealth Signal")
|
| 151 |
-
plt.xlabel("Iterations")
|
| 152 |
-
plt.ylabel("Amplitude")
|
| 153 |
-
plt.grid(True)
|
| 154 |
-
plt.legend()
|
| 155 |
-
plt.show()
|
| 156 |
-
|
| 157 |
-
# Initialize the neural network
|
| 158 |
-
model = FrequencyMaskingNet()
|
| 159 |
-
|
| 160 |
-
# Example IP address to be masked (as a float for simplicity)
|
| 161 |
-
ip_address = 192.168
|
| 162 |
-
|
| 163 |
-
# Generate pseudo-random frequencies to mask the IP
|
| 164 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
| 165 |
-
|
| 166 |
-
# Generate a wealth signal that grows in the direction of energy
|
| 167 |
-
wealth_signal = generate_wealth_signal(len(masked_frequencies))
|
| 168 |
-
|
| 169 |
-
# Visualize the generated frequencies and wealth signal
|
| 170 |
-
plot_frequencies(masked_frequencies, wealth_signal)
|
| 171 |
-
|
| 172 |
-
import torch
|
| 173 |
-
import torch.nn as nn
|
| 174 |
-
import matplotlib.pyplot as plt
|
| 175 |
-
import numpy as np
|
| 176 |
-
|
| 177 |
-
# Define the neural network for generating pseudo-random frequencies
|
| 178 |
-
class FrequencyMaskingNet(nn.Module):
|
| 179 |
-
def __init__(self, input_size=1, hidden_size=64, output_size=1):
|
| 180 |
-
super(FrequencyMaskingNet, self).__init__()
|
| 181 |
-
|
| 182 |
-
self.fc1 = nn.Linear(input_size, hidden_size)
|
| 183 |
-
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
| 184 |
-
self.fc3 = nn.Linear(hidden_size, output_size)
|
| 185 |
-
self.relu = nn.ReLU()
|
| 186 |
-
|
| 187 |
-
def forward(self, x):
|
| 188 |
-
x = self.relu(self.fc1(x))
|
| 189 |
-
x = self.relu(self.fc2(x))
|
| 190 |
-
x = self.fc3(x)
|
| 191 |
-
return x
|
| 192 |
-
|
| 193 |
-
# Function to create random frequencies to mask IP data
|
| 194 |
-
def generate_frequencies(ip, model, iterations=100):
|
| 195 |
-
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
|
| 196 |
-
frequencies = []
|
| 197 |
-
|
| 198 |
-
for _ in range(iterations):
|
| 199 |
-
frequency = model(ip_tensor)
|
| 200 |
-
frequencies.append(frequency.item())
|
| 201 |
-
|
| 202 |
-
return frequencies
|
| 203 |
-
|
| 204 |
-
# Function to generate a wealth signal that transmits in the direction of energy
|
| 205 |
-
def generate_wealth_signal(iterations=100):
|
| 206 |
-
time = np.linspace(0, 10, iterations)
|
| 207 |
-
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
|
| 208 |
-
return wealth_signal
|
| 209 |
-
|
| 210 |
-
# Function to generate a dense encryption waveform
|
| 211 |
-
def generate_encryption_waveform(iterations=100):
|
| 212 |
-
time = np.linspace(0, 10, iterations)
|
| 213 |
-
# Dense waveform with higher frequency and random noise for encryption
|
| 214 |
-
encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
|
| 215 |
-
return encryption_signal
|
| 216 |
-
|
| 217 |
-
# Function to visualize frequencies, wealth signal, and encryption
|
| 218 |
-
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
|
| 219 |
-
plt.figure(figsize=(10, 4))
|
| 220 |
-
|
| 221 |
-
# Plot masked frequencies
|
| 222 |
-
plt.plot(frequencies, color='b', label="Masked Frequencies")
|
| 223 |
-
|
| 224 |
-
# Plot wealth signal
|
| 225 |
-
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
|
| 226 |
-
|
| 227 |
-
# Add encryption signal at target point
|
| 228 |
-
plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
|
| 229 |
-
encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
|
| 230 |
-
|
| 231 |
-
plt.title("SecureWealth Transmittor")
|
| 232 |
-
plt.xlabel("Iterations")
|
| 233 |
-
plt.ylabel("Amplitude")
|
| 234 |
-
plt.grid(True)
|
| 235 |
-
plt.legend()
|
| 236 |
-
plt.show()
|
| 237 |
-
|
| 238 |
-
# Initialize the neural network
|
| 239 |
-
model = FrequencyMaskingNet()
|
| 240 |
-
|
| 241 |
-
# Example IP address to be masked (as a float for simplicity)
|
| 242 |
-
ip_address = 192.168
|
| 243 |
-
|
| 244 |
-
# Generate pseudo-random frequencies to mask the IP
|
| 245 |
-
masked_frequencies = generate_frequencies(ip_address, model)
|
| 246 |
-
|
| 247 |
-
# Generate a wealth signal that grows in the direction of energy
|
| 248 |
-
wealth_signal = generate_wealth_signal(len(masked_frequencies))
|
| 249 |
-
|
| 250 |
-
# Determine where the wealth signal reaches its target (e.g., at its peak)
|
| 251 |
-
target_reached_index = np.argmax(wealth_signal)
|
| 252 |
-
|
| 253 |
-
# Generate dense encryption waveform once the wealth signal reaches its target
|
| 254 |
-
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
|
| 255 |
-
|
| 256 |
-
# Visualize the generated frequencies, wealth signal, and encryption signal
|
| 257 |
-
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|