--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Guy Cecil, the former head of the Democratic Senatorial Campaign Committee and now the boss of a leading Democratic super PAC, voiced his frustration with the inadequacy of Franken’s apology on Twitter. - text: Attorney Stephen Le Brocq, who operates a law firm in the North Texas area sums up the treatment of Guyger perfectly when he says that “The affidavit isn’t written objectively, not at the slightest. - text: Phone This field is for validation purposes and should be left unchanged. - text: The Twitter suspension caught me by surprise. - text: Popular pages like The AntiMedia (2.1 million fans), The Free Thought Project (3.1 million fans), Press for Truth (350K fans), Police the Police (1.9 million fans), Cop Block (1.7 million fans), and Punk Rock Libertarians (125K fans) are just a few of the ones which were unpublished. pipeline_tag: text-classification inference: true model-index: - name: SetFit results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9987117552334943 name: Accuracy --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | | | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9987 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_multiclass_SetFit") # Run inference preds = model("The Twitter suspension caught me by surprise.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 20.4272 | 109 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 131 | | 1 | 129 | | 2 | 2479 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0006 | 1 | 0.3869 | - | | 0.0292 | 50 | 0.3352 | - | | 0.0584 | 100 | 0.2235 | - | | 0.0876 | 150 | 0.1518 | - | | 0.1168 | 200 | 0.1967 | - | | 0.1460 | 250 | 0.1615 | - | | 0.1752 | 300 | 0.1123 | - | | 0.2044 | 350 | 0.1493 | - | | 0.2336 | 400 | 0.0039 | - | | 0.2629 | 450 | 0.0269 | - | | 0.2921 | 500 | 0.0024 | - | | 0.3213 | 550 | 0.0072 | - | | 0.3505 | 600 | 0.0649 | - | | 0.3797 | 650 | 0.0005 | - | | 0.4089 | 700 | 0.0008 | - | | 0.4381 | 750 | 0.0041 | - | | 0.4673 | 800 | 0.0009 | - | | 0.4965 | 850 | 0.0004 | - | | 0.5257 | 900 | 0.0013 | - | | 0.5549 | 950 | 0.0013 | - | | 0.5841 | 1000 | 0.0066 | - | | 0.6133 | 1050 | 0.0355 | - | | 0.6425 | 1100 | 0.0004 | - | | 0.6717 | 1150 | 0.0013 | - | | 0.7009 | 1200 | 0.0003 | - | | 0.7301 | 1250 | 0.0002 | - | | 0.7593 | 1300 | 0.0008 | - | | 0.7886 | 1350 | 0.0002 | - | | 0.8178 | 1400 | 0.0002 | - | | 0.8470 | 1450 | 0.0004 | - | | 0.8762 | 1500 | 0.1193 | - | | 0.9054 | 1550 | 0.0002 | - | | 0.9346 | 1600 | 0.0002 | - | | 0.9638 | 1650 | 0.0002 | - | | 0.9930 | 1700 | 0.0002 | - | | 1.0 | 1712 | - | 0.0073 | | 1.0222 | 1750 | 0.0002 | - | | 1.0514 | 1800 | 0.0006 | - | | 1.0806 | 1850 | 0.0005 | - | | 1.1098 | 1900 | 0.0001 | - | | 1.1390 | 1950 | 0.0012 | - | | 1.1682 | 2000 | 0.0003 | - | | 1.1974 | 2050 | 0.0344 | - | | 1.2266 | 2100 | 0.0038 | - | | 1.2558 | 2150 | 0.0001 | - | | 1.2850 | 2200 | 0.0003 | - | | 1.3143 | 2250 | 0.0114 | - | | 1.3435 | 2300 | 0.0001 | - | | 1.3727 | 2350 | 0.0001 | - | | 1.4019 | 2400 | 0.0001 | - | | 1.4311 | 2450 | 0.0001 | - | | 1.4603 | 2500 | 0.0005 | - | | 1.4895 | 2550 | 0.0086 | - | | 1.5187 | 2600 | 0.0001 | - | | 1.5479 | 2650 | 0.0002 | - | | 1.5771 | 2700 | 0.0001 | - | | 1.6063 | 2750 | 0.0002 | - | | 1.6355 | 2800 | 0.0001 | - | | 1.6647 | 2850 | 0.0001 | - | | 1.6939 | 2900 | 0.0001 | - | | 1.7231 | 2950 | 0.0001 | - | | 1.7523 | 3000 | 0.0001 | - | | 1.7815 | 3050 | 0.0001 | - | | 1.8107 | 3100 | 0.0 | - | | 1.8400 | 3150 | 0.0001 | - | | 1.8692 | 3200 | 0.0001 | - | | 1.8984 | 3250 | 0.0001 | - | | 1.9276 | 3300 | 0.0 | - | | 1.9568 | 3350 | 0.0001 | - | | 1.9860 | 3400 | 0.0002 | - | | **2.0** | **3424** | **-** | **0.0053** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```