File size: 9,473 Bytes
792b8d3
 
 
 
 
 
ecb19a4
792b8d3
 
 
 
 
 
 
 
 
4dbb7f4
792b8d3
 
 
 
 
2078958
792b8d3
 
 
 
 
 
 
 
e186402
792b8d3
 
 
 
9931c4f
 
36deb38
 
792b8d3
 
 
aea285f
792b8d3
2078958
 
c8fc398
 
792b8d3
 
 
 
 
3d20924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9854493
3d20924
 
 
 
 
 
792b8d3
 
 
a6a9fd8
32b5221
f8251b3
792b8d3
 
 
0445269
792b8d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
license: apache-2.0
language:
  - en
base_model:
  - OpenGVLab/InternVL2_5-38B
pipeline_tag: image-text-to-text

---

# SkyworkVL-38B: Multimodal Understanding with Bag of Tricks

---

## Introduction

**SkyworkVL-38B** is an advanced VLM model trained on 2 million high-quality caption and QA samples. Leveraging innovative techniques across multiple training stages, our model delivers superior performance on a range of vision-language tasks.

## 🔑 Key Features

### 1. Multi-Resolution Processing

- Images are processed at multiple resolutions. For each resolution (from high to low), we apply Closest Aspect Ratio Matching to partition the image into tiles. Finally, the original image is resized into a tile and appended to the final representation—ensuring comprehensive image understanding.

### 2. Multi-Stage Supervised Fine-Tuning (SFT)

- **Stage 1:** Fine-tuning on the full dataset.
- **Stage 2:** Refinement using a curated subset of 200K high-scoring samples filtered by GPT-4 evaluations.

### 3. High-Quality Chain-of-Thought (CoT) Fine-Tuning

- Fine-tuning on 40K high-quality CoT data including self-collected multimodal Chinese Gaokao data with detailed analysis to boost the model’s reasoning capability.


## Model Introduction

| Model Name              | Base Model                | Parameters | Download Link                                               |
| ----------------------- | ------------------------- | ---------- | ----------------------------------------------------------- |
| SkyworkVL-2B | [OpenGVLab/InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | 2B        | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-2B) |
| SkyworkVL-38B  | [OpenGVLab/InternVL2_5-38B](https://huggingface.co/OpenGVLab/InternVL2_5-38B) | 38B        | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-38B) |

## Performance

| Metric                      | MathVista (testmini) | MMMU (val)      | AI2D    | OCRBench      | MME            | **RealWorldQA** | **HallusionBench** |
| --------------------------- | -------------------- | --------------- | --------------- | ------------- | -------------- | --------------- | ------------------ |
| Cambrain-34B    | 53.2              | 49.7            | 79.5           | 600          | -          | 67.8         | 41.6               |
| Internvl2-40B     | 63.7                | 55.2           | 86.6            | 837          | 2307           | 71.8            | 56.9               |
| Internvl2.5-38B     | 71.9                 | 63.9            | 87.6            | 842           | 2455           | 73.5            | 56.8               |
| SkyworkVL-38B  | **74.4**      | **64.0** | **88.4** | **854** | **2479** | **76.9** | **58.9**    |

*The performance improvements above demonstrate notable gains in multi-disciplinary question answering, object detection (BBox), and scientific chart analysis among other benchmarks.*

## Usage

We provide an example code to run `SkyworkVL-38B` using `transformers`

### Model Loading


```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "Skywork/SkyworkVL-38B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
```

### Inference with Transformers

```python
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {
         'SkyworkVL-2B': 24, 'SkyworkVL-38B': 64}[model_name]
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.model.rotary_emb'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = 'Skywork/SkyworkVL-38B'
device_map = split_model('SkyworkVL-38B')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./demo/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hi, what can you do?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you explain quantum mechanics to me?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# image-text conversation (图文对话)
question = '<image>\nWhat do you see in this image?'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

```

## Citation

```BibTeX
@misc{SkyworkVL,
  author = {Jiangbo Pei and Peiyu Wang and Yichen Wei and Xiaokun Wang and Yi Peng and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
  title = {SkyworkVL: Multimodal Understanding with Bag of Tricks},
  year = {2025},
  publisher = {Huggingface},
  journal = {Huggingface repository},
  howpublished = {\url{https://huggingface.co/Skywork/SkyworkVL-38B}}
}
```