File size: 9,473 Bytes
792b8d3 ecb19a4 792b8d3 4dbb7f4 792b8d3 2078958 792b8d3 e186402 792b8d3 9931c4f 36deb38 792b8d3 aea285f 792b8d3 2078958 c8fc398 792b8d3 3d20924 9854493 3d20924 792b8d3 a6a9fd8 32b5221 f8251b3 792b8d3 0445269 792b8d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license: apache-2.0
language:
- en
base_model:
- OpenGVLab/InternVL2_5-38B
pipeline_tag: image-text-to-text
---
# SkyworkVL-38B: Multimodal Understanding with Bag of Tricks
---
## Introduction
**SkyworkVL-38B** is an advanced VLM model trained on 2 million high-quality caption and QA samples. Leveraging innovative techniques across multiple training stages, our model delivers superior performance on a range of vision-language tasks.
## 🔑 Key Features
### 1. Multi-Resolution Processing
- Images are processed at multiple resolutions. For each resolution (from high to low), we apply Closest Aspect Ratio Matching to partition the image into tiles. Finally, the original image is resized into a tile and appended to the final representation—ensuring comprehensive image understanding.
### 2. Multi-Stage Supervised Fine-Tuning (SFT)
- **Stage 1:** Fine-tuning on the full dataset.
- **Stage 2:** Refinement using a curated subset of 200K high-scoring samples filtered by GPT-4 evaluations.
### 3. High-Quality Chain-of-Thought (CoT) Fine-Tuning
- Fine-tuning on 40K high-quality CoT data including self-collected multimodal Chinese Gaokao data with detailed analysis to boost the model’s reasoning capability.
## Model Introduction
| Model Name | Base Model | Parameters | Download Link |
| ----------------------- | ------------------------- | ---------- | ----------------------------------------------------------- |
| SkyworkVL-2B | [OpenGVLab/InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | 2B | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-2B) |
| SkyworkVL-38B | [OpenGVLab/InternVL2_5-38B](https://huggingface.co/OpenGVLab/InternVL2_5-38B) | 38B | 🤗 [Download](https://huggingface.co/Skywork/SkyworkVL-38B) |
## Performance
| Metric | MathVista (testmini) | MMMU (val) | AI2D | OCRBench | MME | **RealWorldQA** | **HallusionBench** |
| --------------------------- | -------------------- | --------------- | --------------- | ------------- | -------------- | --------------- | ------------------ |
| Cambrain-34B | 53.2 | 49.7 | 79.5 | 600 | - | 67.8 | 41.6 |
| Internvl2-40B | 63.7 | 55.2 | 86.6 | 837 | 2307 | 71.8 | 56.9 |
| Internvl2.5-38B | 71.9 | 63.9 | 87.6 | 842 | 2455 | 73.5 | 56.8 |
| SkyworkVL-38B | **74.4** | **64.0** | **88.4** | **854** | **2479** | **76.9** | **58.9** |
*The performance improvements above demonstrate notable gains in multi-disciplinary question answering, object detection (BBox), and scientific chart analysis among other benchmarks.*
## Usage
We provide an example code to run `SkyworkVL-38B` using `transformers`
### Model Loading
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "Skywork/SkyworkVL-38B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
```
### Inference with Transformers
```python
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
num_layers = {
'SkyworkVL-2B': 24, 'SkyworkVL-38B': 64}[model_name]
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = 'Skywork/SkyworkVL-38B'
device_map = split_model('SkyworkVL-38B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./demo/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (纯文本对话)
question = 'Hi, what can you do?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you explain quantum mechanics to me?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# image-text conversation (图文对话)
question = '<image>\nWhat do you see in this image?'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
```
## Citation
```BibTeX
@misc{SkyworkVL,
author = {Jiangbo Pei and Peiyu Wang and Yichen Wei and Xiaokun Wang and Yi Peng and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
title = {SkyworkVL: Multimodal Understanding with Bag of Tricks},
year = {2025},
publisher = {Huggingface},
journal = {Huggingface repository},
howpublished = {\url{https://huggingface.co/Skywork/SkyworkVL-38B}}
}
``` |