Update README.md
Browse files
README.md
CHANGED
|
@@ -1,171 +1,111 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
- transformers
|
| 6 |
-
-
|
| 7 |
language:
|
| 8 |
- tr
|
| 9 |
metrics:
|
| 10 |
-
-
|
| 11 |
base_model:
|
| 12 |
-
-
|
| 13 |
-
pipeline_tag:
|
| 14 |
---
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
Given a Turkish sentence, the model generates a list of **aspect terms** (e.g., *kahve*, *servis*, *fiyatlar*) that reflect the primary discussed entities or features.
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
##
|
| 25 |
|
| 26 |
```python
|
| 27 |
-
from transformers import AutoTokenizer,
|
| 28 |
import torch
|
| 29 |
-
import re
|
| 30 |
-
from collections import Counter
|
| 31 |
-
|
| 32 |
-
#LOAD MODEL
|
| 33 |
-
MODEL_ID = "Sengil/t5-turkish-aspect-term-extractor"
|
| 34 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
-
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 37 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID).to(DEVICE)
|
| 38 |
-
model.eval()
|
| 39 |
-
|
| 40 |
-
TURKISH_STOPWORDS = {
|
| 41 |
-
"ve", "çok", "ama", "bir", "bu", "daha", "gibi", "ile", "için",
|
| 42 |
-
"de", "da", "ki", "o", "şu", "bu", "sen", "biz", "siz", "onlar"
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
def is_valid_aspect(word):
|
| 46 |
-
word = word.strip().lower()
|
| 47 |
-
return (
|
| 48 |
-
len(word) > 1 and
|
| 49 |
-
word not in TURKISH_STOPWORDS and
|
| 50 |
-
word.isalpha()
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
def extract_and_rank_aspects(text, max_tokens=64, beams=5):
|
| 54 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
|
| 55 |
-
|
| 56 |
-
with torch.no_grad():
|
| 57 |
-
outputs = model.generate(
|
| 58 |
-
input_ids=inputs["input_ids"],
|
| 59 |
-
attention_mask=inputs["attention_mask"],
|
| 60 |
-
max_new_tokens=max_tokens,
|
| 61 |
-
num_beams=beams,
|
| 62 |
-
num_return_sequences=beams,
|
| 63 |
-
early_stopping=True
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
all_predictions = [
|
| 67 |
-
tokenizer.decode(output, skip_special_tokens=True)
|
| 68 |
-
for output in outputs
|
| 69 |
-
]
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
#INFERENCE
|
| 82 |
-
text = "Artılar: Göl manzarasıyla harika bir atmosfer, Ipoh'un her zaman sıcak olan havası nedeniyle iyi bir klima olan restoran, iyi ve hızlı hizmet sunan garsonlar, temassız ödeme kabul eden e-cüzdan, ücretsiz otopark ama sıcak güneş altında açık, yemeklerin tadı güzel."
|
| 83 |
-
ranked_aspects = extract_and_rank_aspects(text)
|
| 84 |
-
|
| 85 |
-
print("Sorted Aspect Terms:")
|
| 86 |
-
for term, score in ranked_aspects:
|
| 87 |
-
print(f"{term:<15} skor: {score}")
|
| 88 |
-
````
|
| 89 |
-
|
| 90 |
-
**Output:**
|
| 91 |
|
|
|
|
| 92 |
```
|
| 93 |
-
|
| 94 |
-
atmosfer skor: 1
|
| 95 |
-
servis skor: 1
|
| 96 |
-
restoran skor: 1
|
| 97 |
-
hizmet skor: 1
|
| 98 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
| Detail | Value |
|
| 105 |
-
| -------------------- | -------------------------------------------- |
|
| 106 |
-
| **Model Type** | `AutoModelForSeq2SeqLM` (T5-style) |
|
| 107 |
-
| **Base Model** | `Turkish-NLP/t5-efficient-base-turkish` |
|
| 108 |
-
| **Languages** | `tr` (Turkish) |
|
| 109 |
-
| **Fine-tuning Task** | Aspect Term Extraction (sequence generation) |
|
| 110 |
-
| **Framework** | 🤗 Transformers |
|
| 111 |
-
| **License** | Apache-2.0 |
|
| 112 |
-
| **Tokenizer** | SentencePiece (T5-style) |
|
| 113 |
-
|
| 114 |
-
---
|
| 115 |
-
|
| 116 |
-
## 📊 Dataset & Training
|
| 117 |
-
|
| 118 |
-
* Total samples: 37,000+ Turkish review sentences
|
| 119 |
-
* Input: Raw sentence (e.g., `"Pilav çok lezzetliydi ama servis yavaştı."`)
|
| 120 |
-
* Target: Comma-separated aspect terms (e.g., `"pilav, servis"`)
|
| 121 |
-
|
| 122 |
-
### Training Configuration
|
| 123 |
-
|
| 124 |
-
| Setting | Value |
|
| 125 |
-
| --------------------- | ------------------ |
|
| 126 |
-
| **Epochs** | 3 |
|
| 127 |
-
| **Batch size** | 8 |
|
| 128 |
-
| **Max input length** | 128 tokens |
|
| 129 |
-
| **Max output length** | 64 tokens |
|
| 130 |
-
| **Optimizer** | AdamW |
|
| 131 |
-
| **Learning rate** | 3e-5 |
|
| 132 |
-
| **Scheduler** | Linear |
|
| 133 |
-
| **Precision** | FP32 |
|
| 134 |
-
| **Hardware** | 1× Tesla T4 / P100 |
|
| 135 |
-
|
| 136 |
-
---
|
| 137 |
-
|
| 138 |
-
### 🔍 Evaluation
|
| 139 |
-
|
| 140 |
-
The model was evaluated using exact-match micro-F1 score on a held-out test set.
|
| 141 |
-
|
| 142 |
-
| Metric | Score |
|
| 143 |
-
| --------------- | ----: |
|
| 144 |
-
| **Micro-F1** | 0.84+ |
|
| 145 |
-
| **Exact Match** | \~78% |
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## 💡 Use Cases
|
| 150 |
-
|
| 151 |
-
* 💬 Opinion mining in Turkish product or service reviews
|
| 152 |
-
* 🧾 Aspect-level sentiment analysis preprocessing
|
| 153 |
-
* 📊 Feature-based review summarization in NLP pipelines
|
| 154 |
-
|
| 155 |
-
---
|
| 156 |
-
|
| 157 |
-
## 📦 Model Card / Citation
|
| 158 |
-
|
| 159 |
-
```bibtex
|
| 160 |
-
@misc{Sengil2025T5AspectTR,
|
| 161 |
-
title = {Sengil/t5-turkish-aspect-term-extractor: Turkish Aspect Term Extraction with T5},
|
| 162 |
author = {Şengil, Mert},
|
| 163 |
year = {2025},
|
| 164 |
-
url = {https://huggingface.co/Sengil/
|
| 165 |
}
|
| 166 |
```
|
| 167 |
|
| 168 |
---
|
| 169 |
-
|
| 170 |
-
For
|
| 171 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
tags:
|
| 4 |
+
- Dissonant Detection
|
| 5 |
- transformers
|
| 6 |
+
- bert
|
| 7 |
language:
|
| 8 |
- tr
|
| 9 |
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
base_model:
|
| 12 |
+
- ytu-ce-cosmos/turkish-base-bert-uncased
|
| 13 |
+
pipeline_tag: text-classification
|
| 14 |
---
|
| 15 |
+
# **Sengil/ytu-bert-base-dissonance-tr** 🇹🇷
|
| 16 |
|
| 17 |
+
A Turkish BERT-based model fine-tuned for three-way sentiment classification on single-sentence discourse.
|
| 18 |
+
This model categorizes input sentences into one of the following classes:
|
| 19 |
|
| 20 |
+
**Dissonance:** The sentence contains conflicting or contradictory sentiments
|
| 21 |
+
_e.g.,_ "Telefon çok kaliteli ve hızlı bitiyor şarjı"
|
| 22 |
+
**Consonance:** The sentence expresses harmonizing or mutually reinforcing sentiments
|
| 23 |
+
_e.g.,_ "Yemeklerde çok güzel manzarada mükemmel"
|
| 24 |
+
**Neither:** The sentence is neutral or does not clearly reflect either dissonance or consonance
|
| 25 |
+
_e.g.,_ "Bu gün hava çok güzel"
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
+
The model was trained on 37,368 Turkish samples and evaluated on two separate sets of 4,671 samples each.
|
| 29 |
+
It achieved 97.5% accuracy and 97.5% macro-F1 score on the test set, demonstrating strong performance in distinguishing subtle semantic contrasts in Turkish sentences.
|
| 30 |
+
|
| 31 |
+
|**Model Details** | |
|
| 32 |
+
| -------------------- | ----------------------------------------------------- |
|
| 33 |
+
| **Developed by** | Mert Şengil |
|
| 34 |
+
| **Model type** | `BertForSequenceClassification` |
|
| 35 |
+
| **Base model** | `ytu-ce-cosmos/turkish-base-bert-uncased` |
|
| 36 |
+
| **Languages** | `tr` (Turkish) |
|
| 37 |
+
| **License** | Apache-2.0 |
|
| 38 |
+
| **Fine-tuning task** | 3-class sentiment (dissonance / consonance / neither) |
|
| 39 |
|
| 40 |
+
## Uses
|
| 41 |
|
| 42 |
```python
|
| 43 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 44 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
model_id = "Sengil/ytu-bert-base-dissonance-tr"
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 48 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 49 |
|
| 50 |
+
text = "onu çok seviyorum ve güvenmiyorum."
|
| 51 |
+
text = text.replace("I", "ı").lower()
|
| 52 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
logits = model(**inputs).logits
|
| 55 |
|
| 56 |
+
label_id = int(logits.argmax())
|
| 57 |
+
id2label = {0: "Dissonance", 1: "Consonance", 2: "Neither"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
print(f"{{'label': '{id2label[label_id]}','score':{logits.argmax()}}}")
|
| 60 |
```
|
| 61 |
+
output:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
```
|
| 63 |
+
{'label': 'Dissonance','score':0}
|
| 64 |
+
```
|
| 65 |
+
|**Training Details** | |
|
| 66 |
+
| ---------------------- | ---------------------------------------------- |
|
| 67 |
+
| **Training samples** | 37 368 |
|
| 68 |
+
| **Validation samples** | 4 671 |
|
| 69 |
+
| **Test samples** | 4 671 |
|
| 70 |
+
| **Epochs** | 4 |
|
| 71 |
+
| **Batch size** | 32 (train) / 16 (eval) |
|
| 72 |
+
| **Optimizer** | `AdamW` (lr = 2 × 10⁻⁵, weight\_decay = 0.005) |
|
| 73 |
+
| **Scheduler** | Linear with 10 % warm-up |
|
| 74 |
+
| **Precision** | FP32 |
|
| 75 |
+
| **Hardware** | 1× GPU P100 |
|
| 76 |
+
|
| 77 |
+
### Training Loss Progression
|
| 78 |
+
| Epoch | Train Loss | Val Loss |
|
| 79 |
+
| ----: | ---------: | ---------: |
|
| 80 |
+
| 1 | 0.2661 | 0.0912 |
|
| 81 |
+
| 2 | 0.0784 | 0.0812 |
|
| 82 |
+
| 3 | 0.0520 | 0.0859 |
|
| 83 |
+
| 4 | **0.0419** | **0.0859** |
|
| 84 |
+
|
| 85 |
+
## Evaluation
|
| 86 |
+
|
| 87 |
+
| Metric | Value |
|
| 88 |
+
| ------------------- | ---------: |
|
| 89 |
+
| **Accuracy (test)** | **0.9750** |
|
| 90 |
+
| **Macro-F1 (test)** | **0.9749** |
|
| 91 |
+
|
| 92 |
+
|**Environmental Impact** | |
|
| 93 |
+
| ----------------------- | -------------------- |
|
| 94 |
+
| **Hardware** | 1× A100-40 GB |
|
| 95 |
+
| **Training time** | ≈ 4 × 7 min ≈ 0.47 h |
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
## Citation
|
| 99 |
|
| 100 |
+
```
|
| 101 |
+
@misc{Sengil2025DisConBERT,
|
| 102 |
+
title = {Sengil/ytu-bert-base-dissonance-tr: A Three-way Dissonance/Consonance Classifier},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
author = {Şengil, Mert},
|
| 104 |
year = {2025},
|
| 105 |
+
url = {https://huggingface.co/Sengil/ytu-bert-base-dissonance-tr}
|
| 106 |
}
|
| 107 |
```
|
| 108 |
|
| 109 |
---
|
| 110 |
+
I would like to thank YTU for their open-source contributions that supported the development of this model.
|
| 111 |
+
For issues or questions, please open an issue on the Hub repo or contact **[mert sengil](https://www.linkedin.com/in/mertsengil/)**.
|
|
|