Delete siglip2.py
Browse files- siglip2.py +0 -564
siglip2.py
DELETED
|
@@ -1,564 +0,0 @@
|
|
| 1 |
-
# Licensed under the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT (the "License");
|
| 2 |
-
# you may not use this file except in compliance with the License.
|
| 3 |
-
# You may obtain a copy of the License at
|
| 4 |
-
#
|
| 5 |
-
# https://github.com/Tencent-Hunyuan/HunyuanImage-3.0/blob/main/LICENSE
|
| 6 |
-
#
|
| 7 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 8 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
-
# See the License for the specific language governing permissions and
|
| 11 |
-
# limitations under the License.
|
| 12 |
-
# ==============================================================================
|
| 13 |
-
#
|
| 14 |
-
# Copyright 2025 The HuggingFace Inc. team.
|
| 15 |
-
#
|
| 16 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 17 |
-
# you may not use this file except in compliance with the License.
|
| 18 |
-
# You may obtain a copy of the License at
|
| 19 |
-
#
|
| 20 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 21 |
-
#
|
| 22 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 23 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 24 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 25 |
-
# See the License for the specific language governing permissions and
|
| 26 |
-
# limitations under the License.
|
| 27 |
-
# ==============================================================================
|
| 28 |
-
|
| 29 |
-
from typing import Optional, Tuple, Union
|
| 30 |
-
import warnings
|
| 31 |
-
|
| 32 |
-
import torch
|
| 33 |
-
import torch.nn as nn
|
| 34 |
-
import torch.nn.functional as F
|
| 35 |
-
|
| 36 |
-
from transformers.activations import ACT2FN
|
| 37 |
-
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 38 |
-
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
class Config(object):
|
| 42 |
-
def __init__(self, config):
|
| 43 |
-
if config is not None:
|
| 44 |
-
for key, value in config.items():
|
| 45 |
-
setattr(self, key, value)
|
| 46 |
-
|
| 47 |
-
def __getitem__(self, key):
|
| 48 |
-
return getattr(self, key, None)
|
| 49 |
-
|
| 50 |
-
def __setitem__(self, key, value):
|
| 51 |
-
return setattr(self, key, value)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class Siglip2VisionEmbeddings(nn.Module):
|
| 55 |
-
def __init__(self, config):
|
| 56 |
-
super().__init__()
|
| 57 |
-
self.config = config
|
| 58 |
-
self.embed_dim = config.hidden_size
|
| 59 |
-
self.patch_size = config.patch_size
|
| 60 |
-
|
| 61 |
-
self.patch_embedding = nn.Linear(
|
| 62 |
-
in_features=config.num_channels * self.patch_size * self.patch_size,
|
| 63 |
-
out_features=self.embed_dim,
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
self.num_patches = config.num_patches
|
| 67 |
-
self.position_embedding_size = int(self.num_patches**0.5)
|
| 68 |
-
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
|
| 69 |
-
|
| 70 |
-
@staticmethod
|
| 71 |
-
def resize_positional_embeddings(
|
| 72 |
-
positional_embeddings: torch.Tensor,
|
| 73 |
-
spatial_shapes: torch.LongTensor,
|
| 74 |
-
max_length: int,
|
| 75 |
-
) -> torch.Tensor:
|
| 76 |
-
"""
|
| 77 |
-
Resize positional embeddings to image-specific size and pad to a fixed size.
|
| 78 |
-
|
| 79 |
-
Args:
|
| 80 |
-
positional_embeddings (`torch.Tensor`):
|
| 81 |
-
Position embeddings of shape (height, width, embed_dim)
|
| 82 |
-
spatial_shapes (`torch.LongTensor`):
|
| 83 |
-
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
|
| 84 |
-
max_length (`int`):
|
| 85 |
-
Maximum length of the positional embeddings to pad resized positional embeddings to
|
| 86 |
-
|
| 87 |
-
Returns:
|
| 88 |
-
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
|
| 89 |
-
"""
|
| 90 |
-
batch_size = spatial_shapes.shape[0]
|
| 91 |
-
embed_dim = positional_embeddings.shape[-1]
|
| 92 |
-
source_dtype = positional_embeddings.dtype
|
| 93 |
-
|
| 94 |
-
resulted_positional_embeddings = torch.empty(
|
| 95 |
-
(batch_size, max_length, embed_dim),
|
| 96 |
-
device=positional_embeddings.device,
|
| 97 |
-
dtype=source_dtype,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
# (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
|
| 101 |
-
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
|
| 102 |
-
|
| 103 |
-
# Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
|
| 104 |
-
if positional_embeddings.device.type == "cpu":
|
| 105 |
-
positional_embeddings = positional_embeddings.to(torch.float32)
|
| 106 |
-
|
| 107 |
-
for i in range(batch_size):
|
| 108 |
-
# (1, dim, height, width) -> (1, dim, target_height, target_width)
|
| 109 |
-
height, width = spatial_shapes[i]
|
| 110 |
-
resized_embeddings = F.interpolate(
|
| 111 |
-
positional_embeddings,
|
| 112 |
-
size=(height, width),
|
| 113 |
-
mode="bilinear",
|
| 114 |
-
align_corners=False,
|
| 115 |
-
antialias=True,
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# (1, dim, target_height, target_width) -> (target_height * target_width, dim)
|
| 119 |
-
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
|
| 120 |
-
|
| 121 |
-
# Cast to original dtype
|
| 122 |
-
resized_embeddings = resized_embeddings.to(source_dtype)
|
| 123 |
-
|
| 124 |
-
resulted_positional_embeddings[i, : height * width] = resized_embeddings
|
| 125 |
-
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
|
| 126 |
-
|
| 127 |
-
return resulted_positional_embeddings
|
| 128 |
-
|
| 129 |
-
def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor:
|
| 130 |
-
"""
|
| 131 |
-
Args:
|
| 132 |
-
pixel_values (`torch.FloatTensor`):
|
| 133 |
-
Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
|
| 134 |
-
spatial_shapes (`List[Tuple[int, int]]`):
|
| 135 |
-
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
|
| 136 |
-
"""
|
| 137 |
-
|
| 138 |
-
# Apply patch embeddings to already patchified pixel values
|
| 139 |
-
target_dtype = self.patch_embedding.weight.dtype
|
| 140 |
-
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
|
| 141 |
-
|
| 142 |
-
# Get positional resized and padded positional embeddings
|
| 143 |
-
positional_embeddings = self.position_embedding.weight.reshape(
|
| 144 |
-
self.position_embedding_size, self.position_embedding_size, -1
|
| 145 |
-
)
|
| 146 |
-
resized_positional_embeddings = self.resize_positional_embeddings(
|
| 147 |
-
positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1]
|
| 148 |
-
)
|
| 149 |
-
|
| 150 |
-
# Add positional embeddings to patch embeddings
|
| 151 |
-
embeddings = patch_embeds + resized_positional_embeddings
|
| 152 |
-
return embeddings
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
class Siglip2Attention(nn.Module):
|
| 156 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 157 |
-
|
| 158 |
-
def __init__(self, config):
|
| 159 |
-
super().__init__()
|
| 160 |
-
self.config = config
|
| 161 |
-
self.embed_dim = config.hidden_size
|
| 162 |
-
self.num_heads = config.num_attention_heads
|
| 163 |
-
self.head_dim = self.embed_dim // self.num_heads
|
| 164 |
-
if self.head_dim * self.num_heads != self.embed_dim:
|
| 165 |
-
raise ValueError(
|
| 166 |
-
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 167 |
-
f" {self.num_heads})."
|
| 168 |
-
)
|
| 169 |
-
self.scale = self.head_dim**-0.5
|
| 170 |
-
self.dropout = config.attention_dropout
|
| 171 |
-
|
| 172 |
-
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 173 |
-
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 174 |
-
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 175 |
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 176 |
-
|
| 177 |
-
def forward(
|
| 178 |
-
self,
|
| 179 |
-
hidden_states: torch.Tensor,
|
| 180 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 181 |
-
output_attentions: Optional[bool] = False,
|
| 182 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 183 |
-
"""Input shape: Batch x Time x Channel"""
|
| 184 |
-
|
| 185 |
-
batch_size, q_len, _ = hidden_states.size()
|
| 186 |
-
|
| 187 |
-
query_states = self.q_proj(hidden_states)
|
| 188 |
-
key_states = self.k_proj(hidden_states)
|
| 189 |
-
value_states = self.v_proj(hidden_states)
|
| 190 |
-
|
| 191 |
-
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 192 |
-
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 193 |
-
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 194 |
-
|
| 195 |
-
k_v_seq_len = key_states.shape[-2]
|
| 196 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 197 |
-
|
| 198 |
-
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
| 199 |
-
raise ValueError(
|
| 200 |
-
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
| 201 |
-
f" {attn_weights.size()}"
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
if attention_mask is not None:
|
| 205 |
-
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
| 206 |
-
raise ValueError(
|
| 207 |
-
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, "
|
| 208 |
-
f"but is {attention_mask.size()}"
|
| 209 |
-
)
|
| 210 |
-
attn_weights = attn_weights + attention_mask
|
| 211 |
-
|
| 212 |
-
# upcast attention to fp32
|
| 213 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 214 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 215 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
| 216 |
-
|
| 217 |
-
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
| 218 |
-
raise ValueError(
|
| 219 |
-
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
| 220 |
-
f" {attn_output.size()}"
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 224 |
-
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 225 |
-
|
| 226 |
-
attn_output = self.out_proj(attn_output)
|
| 227 |
-
|
| 228 |
-
return attn_output, attn_weights
|
| 229 |
-
|
| 230 |
-
class Siglip2SdpaAttention(Siglip2Attention):
|
| 231 |
-
"""
|
| 232 |
-
Siglip2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 233 |
-
`Siglip2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt
|
| 234 |
-
to SDPA API.
|
| 235 |
-
"""
|
| 236 |
-
|
| 237 |
-
is_causal = False
|
| 238 |
-
|
| 239 |
-
# Adapted from Siglip2Attention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
| 240 |
-
def forward(
|
| 241 |
-
self,
|
| 242 |
-
hidden_states: torch.Tensor,
|
| 243 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 244 |
-
output_attentions: Optional[bool] = False,
|
| 245 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 246 |
-
if output_attentions:
|
| 247 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
|
| 248 |
-
# once this is implemented.
|
| 249 |
-
warnings.warn(
|
| 250 |
-
"Siglip2Model is using Siglip2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
|
| 251 |
-
"does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 252 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. '
|
| 253 |
-
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 254 |
-
)
|
| 255 |
-
return super().forward(
|
| 256 |
-
hidden_states=hidden_states,
|
| 257 |
-
attention_mask=attention_mask,
|
| 258 |
-
output_attentions=output_attentions,
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
batch_size, q_len, _ = hidden_states.size()
|
| 262 |
-
|
| 263 |
-
query_states = self.q_proj(hidden_states)
|
| 264 |
-
key_states = self.k_proj(hidden_states)
|
| 265 |
-
value_states = self.v_proj(hidden_states)
|
| 266 |
-
|
| 267 |
-
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 268 |
-
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 269 |
-
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 270 |
-
|
| 271 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
|
| 272 |
-
# custom attn_mask,
|
| 273 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 274 |
-
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 275 |
-
query_states = query_states.contiguous()
|
| 276 |
-
key_states = key_states.contiguous()
|
| 277 |
-
value_states = value_states.contiguous()
|
| 278 |
-
|
| 279 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an
|
| 280 |
-
# inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph options.
|
| 281 |
-
# An inline conditional prevents dynamic shapes from compiling.
|
| 282 |
-
is_causal = True if self.is_causal and q_len > 1 else False
|
| 283 |
-
|
| 284 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 285 |
-
query_states,
|
| 286 |
-
key_states,
|
| 287 |
-
value_states,
|
| 288 |
-
attn_mask=attention_mask,
|
| 289 |
-
dropout_p=self.dropout if self.training else 0.0,
|
| 290 |
-
is_causal=is_causal,
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 294 |
-
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
|
| 295 |
-
|
| 296 |
-
attn_output = self.out_proj(attn_output)
|
| 297 |
-
|
| 298 |
-
return attn_output, None
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
class Siglip2MLP(nn.Module):
|
| 302 |
-
def __init__(self, config):
|
| 303 |
-
super().__init__()
|
| 304 |
-
self.config = config
|
| 305 |
-
self.activation_fn = ACT2FN[config.hidden_act]
|
| 306 |
-
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 307 |
-
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 308 |
-
|
| 309 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 310 |
-
hidden_states = self.fc1(hidden_states)
|
| 311 |
-
hidden_states = self.activation_fn(hidden_states)
|
| 312 |
-
hidden_states = self.fc2(hidden_states)
|
| 313 |
-
return hidden_states
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
class Siglip2EncoderLayer(nn.Module):
|
| 317 |
-
def __init__(self, config):
|
| 318 |
-
super().__init__()
|
| 319 |
-
self.embed_dim = config.hidden_size
|
| 320 |
-
self.self_attn = Siglip2Attention(config=config)
|
| 321 |
-
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 322 |
-
self.mlp = Siglip2MLP(config)
|
| 323 |
-
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 324 |
-
|
| 325 |
-
# Ignore copy
|
| 326 |
-
def forward(
|
| 327 |
-
self,
|
| 328 |
-
hidden_states: torch.Tensor,
|
| 329 |
-
attention_mask: torch.Tensor,
|
| 330 |
-
output_attentions: Optional[bool] = False,
|
| 331 |
-
) -> Tuple[torch.FloatTensor]:
|
| 332 |
-
"""
|
| 333 |
-
Args:
|
| 334 |
-
hidden_states (`torch.FloatTensor`):
|
| 335 |
-
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
| 336 |
-
attention_mask (`torch.FloatTensor`):
|
| 337 |
-
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very
|
| 338 |
-
large negative values.
|
| 339 |
-
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 340 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 341 |
-
returned tensors for more detail.
|
| 342 |
-
"""
|
| 343 |
-
residual = hidden_states
|
| 344 |
-
|
| 345 |
-
hidden_states = self.layer_norm1(hidden_states)
|
| 346 |
-
hidden_states, attn_weights = self.self_attn(
|
| 347 |
-
hidden_states=hidden_states,
|
| 348 |
-
attention_mask=attention_mask,
|
| 349 |
-
output_attentions=output_attentions,
|
| 350 |
-
)
|
| 351 |
-
hidden_states = residual + hidden_states
|
| 352 |
-
|
| 353 |
-
residual = hidden_states
|
| 354 |
-
hidden_states = self.layer_norm2(hidden_states)
|
| 355 |
-
hidden_states = self.mlp(hidden_states)
|
| 356 |
-
hidden_states = residual + hidden_states
|
| 357 |
-
|
| 358 |
-
outputs = (hidden_states,)
|
| 359 |
-
|
| 360 |
-
if output_attentions:
|
| 361 |
-
outputs += (attn_weights,)
|
| 362 |
-
|
| 363 |
-
return outputs
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
class Siglip2Encoder(nn.Module):
|
| 367 |
-
"""
|
| 368 |
-
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 369 |
-
[`Siglip2EncoderLayer`].
|
| 370 |
-
|
| 371 |
-
Args:
|
| 372 |
-
config: Siglip2Config
|
| 373 |
-
"""
|
| 374 |
-
|
| 375 |
-
def __init__(self, config):
|
| 376 |
-
super().__init__()
|
| 377 |
-
self.config = config
|
| 378 |
-
self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 379 |
-
self.gradient_checkpointing = True
|
| 380 |
-
|
| 381 |
-
# Ignore copy
|
| 382 |
-
def forward(
|
| 383 |
-
self,
|
| 384 |
-
inputs_embeds,
|
| 385 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 386 |
-
output_attentions: Optional[bool] = None,
|
| 387 |
-
output_hidden_states: Optional[bool] = None,
|
| 388 |
-
return_dict: Optional[bool] = None,
|
| 389 |
-
) -> Union[Tuple, BaseModelOutput]:
|
| 390 |
-
r"""
|
| 391 |
-
Args:
|
| 392 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 393 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 394 |
-
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 395 |
-
than the model's internal embedding lookup matrix.
|
| 396 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 397 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 398 |
-
|
| 399 |
-
- 1 for tokens that are **not masked**,
|
| 400 |
-
- 0 for tokens that are **masked**.
|
| 401 |
-
|
| 402 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 403 |
-
output_attentions (`bool`, *optional*):
|
| 404 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 405 |
-
returned tensors for more detail.
|
| 406 |
-
output_hidden_states (`bool`, *optional*):
|
| 407 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 408 |
-
for more detail.
|
| 409 |
-
return_dict (`bool`, *optional*):
|
| 410 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 411 |
-
"""
|
| 412 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 413 |
-
output_hidden_states = (
|
| 414 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 415 |
-
)
|
| 416 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 417 |
-
|
| 418 |
-
encoder_states = () if output_hidden_states else None
|
| 419 |
-
all_attentions = () if output_attentions else None
|
| 420 |
-
|
| 421 |
-
hidden_states = inputs_embeds
|
| 422 |
-
for layer_index, encoder_layer in enumerate(self.layers): # len(self.layers): 27
|
| 423 |
-
if output_hidden_states:
|
| 424 |
-
encoder_states = encoder_states + (hidden_states,)
|
| 425 |
-
|
| 426 |
-
layer_outputs = encoder_layer(
|
| 427 |
-
hidden_states,
|
| 428 |
-
attention_mask,
|
| 429 |
-
output_attentions=output_attentions,
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
hidden_states = layer_outputs[0]
|
| 433 |
-
|
| 434 |
-
if output_attentions:
|
| 435 |
-
all_attentions = all_attentions + (layer_outputs[1],)
|
| 436 |
-
|
| 437 |
-
if output_hidden_states:
|
| 438 |
-
encoder_states = encoder_states + (hidden_states,)
|
| 439 |
-
|
| 440 |
-
if not return_dict:
|
| 441 |
-
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 442 |
-
return BaseModelOutput(
|
| 443 |
-
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
class Siglip2MultiheadAttentionPoolingHead(nn.Module):
|
| 448 |
-
"""Multihead Attention Pooling."""
|
| 449 |
-
|
| 450 |
-
def __init__(self, config):
|
| 451 |
-
super().__init__()
|
| 452 |
-
|
| 453 |
-
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
| 454 |
-
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
| 455 |
-
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 456 |
-
self.mlp = Siglip2MLP(config)
|
| 457 |
-
self.num_heads = config.num_attention_heads
|
| 458 |
-
|
| 459 |
-
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
|
| 460 |
-
batch_size = hidden_state.shape[0]
|
| 461 |
-
probe = self.probe.repeat(batch_size, 1, 1)
|
| 462 |
-
|
| 463 |
-
if attention_mask is not None:
|
| 464 |
-
target_len, source_len = probe.shape[1], hidden_state.shape[1]
|
| 465 |
-
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len)
|
| 466 |
-
attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1)
|
| 467 |
-
attention_mask = attention_mask.reshape(-1, target_len, source_len)
|
| 468 |
-
|
| 469 |
-
hidden_state = self.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[0]
|
| 470 |
-
|
| 471 |
-
residual = hidden_state
|
| 472 |
-
hidden_state = self.layernorm(hidden_state)
|
| 473 |
-
hidden_state = residual + self.mlp(hidden_state)
|
| 474 |
-
|
| 475 |
-
return hidden_state[:, 0]
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
class Siglip2VisionTransformer(nn.Module):
|
| 479 |
-
def __init__(self, config):
|
| 480 |
-
super().__init__()
|
| 481 |
-
config = Config(config)
|
| 482 |
-
self.config = config
|
| 483 |
-
embed_dim = config.hidden_size
|
| 484 |
-
|
| 485 |
-
self.embeddings = Siglip2VisionEmbeddings(config)
|
| 486 |
-
self.encoder = Siglip2Encoder(config)
|
| 487 |
-
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 488 |
-
self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head
|
| 489 |
-
if self.use_head:
|
| 490 |
-
self.head = Siglip2MultiheadAttentionPoolingHead(config)
|
| 491 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 492 |
-
|
| 493 |
-
def forward(
|
| 494 |
-
self,
|
| 495 |
-
pixel_values: torch.FloatTensor,
|
| 496 |
-
attention_mask: torch.Tensor,
|
| 497 |
-
spatial_shapes: torch.LongTensor,
|
| 498 |
-
output_attentions: Optional[bool] = None,
|
| 499 |
-
output_hidden_states: Optional[bool] = None,
|
| 500 |
-
return_dict: Optional[bool] = None,
|
| 501 |
-
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 502 |
-
r"""
|
| 503 |
-
Returns:
|
| 504 |
-
|
| 505 |
-
"""
|
| 506 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 507 |
-
output_hidden_states = (
|
| 508 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 509 |
-
)
|
| 510 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 511 |
-
|
| 512 |
-
hidden_states = self.embeddings(pixel_values, spatial_shapes)
|
| 513 |
-
|
| 514 |
-
if attention_mask is not None and not self._use_flash_attention_2:
|
| 515 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
| 516 |
-
encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
| 517 |
-
else:
|
| 518 |
-
encoder_attention_mask = attention_mask
|
| 519 |
-
|
| 520 |
-
encoder_outputs = self.encoder(
|
| 521 |
-
inputs_embeds=hidden_states,
|
| 522 |
-
attention_mask=encoder_attention_mask,
|
| 523 |
-
output_attentions=output_attentions,
|
| 524 |
-
output_hidden_states=output_hidden_states,
|
| 525 |
-
return_dict=return_dict,
|
| 526 |
-
)
|
| 527 |
-
|
| 528 |
-
last_hidden_state = encoder_outputs[0]
|
| 529 |
-
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 530 |
-
|
| 531 |
-
pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None
|
| 532 |
-
if not return_dict:
|
| 533 |
-
return (last_hidden_state, pooler_output) + encoder_outputs[1:]
|
| 534 |
-
|
| 535 |
-
return BaseModelOutputWithPooling(
|
| 536 |
-
last_hidden_state=last_hidden_state,
|
| 537 |
-
pooler_output=pooler_output,
|
| 538 |
-
hidden_states=encoder_outputs.hidden_states,
|
| 539 |
-
attentions=encoder_outputs.attentions,
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
class LightProjector(nn.Module):
|
| 544 |
-
def __init__(self, config):
|
| 545 |
-
config = Config(config)
|
| 546 |
-
super().__init__()
|
| 547 |
-
|
| 548 |
-
if config.projector_type == "linear":
|
| 549 |
-
modules = nn.Linear(config.input_dim, config.n_embed)
|
| 550 |
-
|
| 551 |
-
elif config.projector_type == "mlp_gelu":
|
| 552 |
-
modules = [nn.Linear(config.input_dim, config.n_embed)]
|
| 553 |
-
for _ in range(1, config.depth):
|
| 554 |
-
modules.append(nn.GELU())
|
| 555 |
-
modules.append(nn.Linear(config.n_embed, config.n_embed))
|
| 556 |
-
modules = nn.Sequential(*modules)
|
| 557 |
-
|
| 558 |
-
else:
|
| 559 |
-
raise ValueError(f"Unknown projector type: {config.projector_type}")
|
| 560 |
-
|
| 561 |
-
self.layers = modules
|
| 562 |
-
|
| 563 |
-
def forward(self, x):
|
| 564 |
-
return self.layers(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|