---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: apache-2.0
base_model: Qwen/Qwen3-VL-235B-A22B-Instruct
---
# Qwen3-VL-235B-A22B-Instruct-NVFP4
## Model Overview
- **Model Architecture:** Qwen/Qwen3-VL-235B-A22B-Instruct
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 10/29/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI
This model is a quantized version of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
```python
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Qwen3VLMoeForConditionalGeneration
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
# NOTE: Requires a minimum of transformers 4.57.0
MODEL_ID = "Qwen/Qwen3-VL-235B-A22B-Instruct"
# Load model.
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
DATASET_ID = "neuralmagic/calibration"
NUM_CALIBRATION_SAMPLES = 20
MAX_SEQUENCE_LENGTH = 8192
ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")
def preprocess_function(example):
messgages = []
for message in example["messages"]:
messgages.append(
{
"role": message["role"],
"content": [{"type": "text", "text": message["content"]}],
}
)
return processor.apply_chat_template(
messgages,
return_tensors="pt",
padding=False,
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
tokenize=True,
add_special_tokens=False,
return_dict=True,
add_generation_prompt=False,
)
ds = ds.map(preprocess_function, batched=False, remove_columns=ds.column_names)
def data_collator(batch):
assert len(batch) == 1
return {
key: (
torch.tensor(value)
if key != "pixel_values"
else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
)
for key, value in batch[0].items()
}
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp4 with group-wise quantization
# * quantize the activations to fp4 with dynamic group activations
recipe = QuantizationModifier(
targets="Linear",
scheme="NVFP4",
ignore=[
"re:.*lm_head",
"re:visual.*",
"re:model.visual.*",
"re:.*mlp.gate$",
],
)
# Apply quantization.
oneshot(
model=model,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
dataset=ds,
data_collator=data_collator,
)
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(processor.decode(output[0]))
print("==========================================")
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
```
## Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).
### Accuracy
| Category |
Metric |
Qwen/Qwen3-VL-235B-A22B-Instruct |
RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4 (this model) |
Recovery |
| OpenLLM |
arc_challenge |
72.95 |
71.59 |
98.13 |
| gsm8k |
90.37 |
88.25 |
97.65 |
| hellaswag |
87.94 |
86.80 |
98.70 |
| mmlu |
87.12 |
86.22 |
98.97 |
| truthfulqa_mc2 |
63.31 |
62.37 |
98.52 |
| winogrande |
81.93 |
80.43 |
98.17 |
| Average |
80.60 |
79.28 |
98.35 |
| Vision |
mmmu_val |
63.56 |
62.11 |
97.71 |
| chartqa |
90.52 |
89.00 |
98.32 |
| Average |
77.04 |
75.56 |
98.08 |
### Reproduction
The results were obtained using the following commands:
#### OpenLLM
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks openllm \
--batch_size auto
```
#### Vision
```
python3 -m lmms_eval \
--model vllm \
--model_args model=RedHatAI/Qwen3-VL-235B-A22B-Instruct-NVFP4,tensor_parallel_size=4,max_model_len=20000 \
--tasks chartqa,mmmu_val \
--batch_size 1
```