Update README.md
Browse files
README.md
CHANGED
|
@@ -1,8 +1,174 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
### Accuracy
|
| 7 |
<table>
|
| 8 |
<thead>
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
+
tags:
|
| 5 |
+
- fp8
|
| 6 |
+
- quantized
|
| 7 |
+
- llm-compressor
|
| 8 |
+
- compressed-tensors
|
| 9 |
+
- red hat
|
| 10 |
+
base_model:
|
| 11 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
| 12 |
---
|
| 13 |
|
| 14 |
|
| 15 |
+
# Llama-3.3-70B-Instruct-FP8-block
|
| 16 |
+
|
| 17 |
+
## Model Overview
|
| 18 |
+
- **Model Architecture:** LlamaForCausalLM
|
| 19 |
+
- **Input:** Text
|
| 20 |
+
- **Output:** Text
|
| 21 |
+
- **Model Optimizations:**
|
| 22 |
+
- **Weight quantization:** FP8
|
| 23 |
+
- **Activation quantization:** FP8
|
| 24 |
+
- **Release Date:**
|
| 25 |
+
- **Version:** 1.0
|
| 26 |
+
- **Model Developers:**: Red Hat
|
| 27 |
+
|
| 28 |
+
Quantized version of [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct).
|
| 29 |
+
|
| 30 |
+
### Model Optimizations
|
| 31 |
+
|
| 32 |
+
This model was obtained by quantizing the weights and activations of [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) to FP8 data type.
|
| 33 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
| 34 |
+
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
|
| 35 |
+
|
| 36 |
+
## Deployment
|
| 37 |
+
|
| 38 |
+
### Use with vLLM
|
| 39 |
+
|
| 40 |
+
1. Initialize vLLM server:
|
| 41 |
+
```
|
| 42 |
+
vllm serve nm-testing/Llama-3.3-70B-Instruct-FP8-block --tensor_parallel_size 4
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
2. Send requests to the server:
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
from openai import OpenAI
|
| 49 |
+
|
| 50 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
| 51 |
+
openai_api_key = "EMPTY"
|
| 52 |
+
openai_api_base = "http://<your-server-host>:8000/v1"
|
| 53 |
+
|
| 54 |
+
client = OpenAI(
|
| 55 |
+
api_key=openai_api_key,
|
| 56 |
+
base_url=openai_api_base,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
model = "nm-testing/Llama-3.3-70B-Instruct-FP8-block"
|
| 60 |
+
|
| 61 |
+
messages = [
|
| 62 |
+
{
|
| 63 |
+
"role": "user",
|
| 64 |
+
"content": [
|
| 65 |
+
{
|
| 66 |
+
"type": "image_url",
|
| 67 |
+
"image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
|
| 68 |
+
},
|
| 69 |
+
{"type": "text", "text": "Describe this image."},
|
| 70 |
+
],
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
outputs = client.chat.completions.create(
|
| 75 |
+
model=model,
|
| 76 |
+
messages=messages,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
generated_text = outputs.choices[0].message.content
|
| 80 |
+
print(generated_text)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
## Creation
|
| 84 |
+
|
| 85 |
+
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
|
| 86 |
+
|
| 87 |
+
<details>
|
| 88 |
+
<summary>Creation details</summary>
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
from transformers import AutoProcessor, LlamaForCausalLM
|
| 92 |
+
|
| 93 |
+
from llmcompressor import oneshot
|
| 94 |
+
from llmcompressor.modeling import replace_modules_for_calibration
|
| 95 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
| 96 |
+
|
| 97 |
+
MODEL_ID = "meta-llama/Llama-3.3-70B-Instruct"
|
| 98 |
+
|
| 99 |
+
# Load model.
|
| 100 |
+
model = LlamaForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
|
| 101 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 102 |
+
model = replace_modules_for_calibration(model)
|
| 103 |
+
|
| 104 |
+
# Configure the quantization algorithm and scheme.
|
| 105 |
+
# In this case, we:
|
| 106 |
+
# * quantize the weights to fp8 with per-block quantization
|
| 107 |
+
# * quantize the activations to fp8 with dynamic token activations
|
| 108 |
+
recipe = QuantizationModifier(
|
| 109 |
+
targets="Linear",
|
| 110 |
+
scheme="FP8_BLOCK",
|
| 111 |
+
ignore=["lm_head"],
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Apply quantization.
|
| 115 |
+
oneshot(model=model, recipe=recipe)
|
| 116 |
+
|
| 117 |
+
# Save to disk in compressed-tensors format.
|
| 118 |
+
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
|
| 119 |
+
model.save_pretrained(SAVE_DIR)
|
| 120 |
+
processor.save_pretrained(SAVE_DIR)
|
| 121 |
+
```
|
| 122 |
+
</details>
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
## Evaluation
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval).
|
| 129 |
+
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
|
| 130 |
+
|
| 131 |
+
<details>
|
| 132 |
+
<summary>Evaluation details</summary>
|
| 133 |
+
|
| 134 |
+
**lm-evaluation-harness**
|
| 135 |
+
```
|
| 136 |
+
lm_eval \
|
| 137 |
+
--model vllm \
|
| 138 |
+
--model_args pretrained="nm-testing/Llama-3.3-70B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=4,gpu_memory_utilization=0.8,enable_chunked_prefill=True \
|
| 139 |
+
--tasks openllm \
|
| 140 |
+
--write_out \
|
| 141 |
+
--batch_size auto \
|
| 142 |
+
--output_path output_dir \
|
| 143 |
+
--show_config
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
**lighteval**
|
| 147 |
+
|
| 148 |
+
lighteval_model_arguments.yaml
|
| 149 |
+
```yaml
|
| 150 |
+
model_parameters:
|
| 151 |
+
model_name: nm-testing/Llama-3.3-70B-Instruct-FP8-block
|
| 152 |
+
dtype: auto
|
| 153 |
+
gpu_memory_utilization: 0.9
|
| 154 |
+
generation_parameters:
|
| 155 |
+
temperature: 0.6
|
| 156 |
+
min_p: 0.0
|
| 157 |
+
top_p: 0.95
|
| 158 |
+
top_k: 20
|
| 159 |
+
max_new_tokens: 32768
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
```
|
| 163 |
+
lighteval vllm \
|
| 164 |
+
--model_args lighteval_model_arguments.yaml \
|
| 165 |
+
--tasks lighteval|aime25|0 \
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
</details>
|
| 170 |
+
|
| 171 |
+
|
| 172 |
### Accuracy
|
| 173 |
<table>
|
| 174 |
<thead>
|