modify README & add model
Browse files- .DS_Store +0 -0
- README.md +37 -0
- mnist_lenet.pt +3 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
CHANGED
|
@@ -1,3 +1,40 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
## Introduction
|
| 6 |
+
|
| 7 |
+
MNIST_LeNet is a CNN model used for handwriting recognization.
|
| 8 |
+
This model is trained with traditional MNIST dataset, which is included in PyTorch as default.
|
| 9 |
+
|
| 10 |
+
As a result, it could achieve 99.5% accuracy among handwriting recognization tasks.
|
| 11 |
+
|
| 12 |
+
## Hands on
|
| 13 |
+
|
| 14 |
+
```python3
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
LeNet = torch.load('path/to/model/mnist_lenet.pt')
|
| 18 |
+
|
| 19 |
+
LeNet.eval()
|
| 20 |
+
|
| 21 |
+
# config preprocessor for your data
|
| 22 |
+
transform = ...
|
| 23 |
+
|
| 24 |
+
# load data
|
| 25 |
+
input_data = transform(open('path/to/your/data'))
|
| 26 |
+
|
| 27 |
+
# predict with our model
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
output = LeNet(input_data)
|
| 30 |
+
|
| 31 |
+
# explain results
|
| 32 |
+
prob = torch.nn.functional.softmax(output[0], dim=0)
|
| 33 |
+
...
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
## Reference
|
| 37 |
+
|
| 38 |
+
- [LeNet Paper: GradientBased Learning Applied to Document
|
| 39 |
+
Recognition(1998)](http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf)
|
| 40 |
+
|
mnist_lenet.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82bddfddbfb79c2dbc95f47c265b924b63ac9dabdff48b682f27fc213a8f588f
|
| 3 |
+
size 183088
|