Orellius commited on
Commit
ef9c6a1
·
verified ·
1 Parent(s): b3e7044

Upload policy weights, train config and readme

Browse files
Files changed (4) hide show
  1. README.md +62 -0
  2. config.json +53 -0
  3. model.safetensors +3 -0
  4. train_config.json +171 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets: hubnemo/so101_matchbox_reward
3
+ library_name: lerobot
4
+ license: apache-2.0
5
+ model_name: reward_classifier
6
+ pipeline_tag: robotics
7
+ tags:
8
+ - robotics
9
+ - lerobot
10
+ - reward_classifier
11
+ ---
12
+
13
+ # Model Card for reward_classifier
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+ A reward classifier is a lightweight neural network that scores observations or trajectories for task success, providing a learned reward signal or offline evaluation when explicit rewards are unavailable.
19
+
20
+
21
+ This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
22
+ See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
23
+
24
+ ---
25
+
26
+ ## How to Get Started with the Model
27
+
28
+ For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
29
+ Below is the short version on how to train and run inference/eval:
30
+
31
+ ### Train from scratch
32
+
33
+ ```bash
34
+ python lerobot/scripts/train.py \
35
+ --dataset.repo_id=${HF_USER}/<dataset> \
36
+ --policy.type=act \
37
+ --output_dir=outputs/train/<desired_policy_repo_id> \
38
+ --job_name=lerobot_training \
39
+ --policy.device=cuda \
40
+ --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
41
+ --wandb.enable=true
42
+ ```
43
+
44
+ *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
45
+
46
+ ### Evaluate the policy/run inference
47
+
48
+ ```bash
49
+ python -m lerobot.record \
50
+ --robot.type=so100_follower \
51
+ --dataset.repo_id=<hf_user>/eval_<dataset> \
52
+ --policy.path=<hf_user>/<desired_policy_repo_id> \
53
+ --episodes=10
54
+ ```
55
+
56
+ Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
57
+
58
+ ---
59
+
60
+ ## Model Details
61
+
62
+ * **License:** apache-2.0
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "reward_classifier",
3
+ "n_obs_steps": 1,
4
+ "normalization_mapping": {
5
+ "VISUAL": "IDENTITY",
6
+ "STATE": "MEAN_STD",
7
+ "ACTION": "MEAN_STD"
8
+ },
9
+ "input_features": {
10
+ "observation.state": {
11
+ "type": "STATE",
12
+ "shape": [
13
+ 12
14
+ ]
15
+ },
16
+ "observation.image.front": {
17
+ "type": "VISUAL",
18
+ "shape": [
19
+ 480,
20
+ 640,
21
+ 3
22
+ ]
23
+ }
24
+ },
25
+ "output_features": {
26
+ "action": {
27
+ "type": "ACTION",
28
+ "shape": [
29
+ 6
30
+ ]
31
+ }
32
+ },
33
+ "device": "mps",
34
+ "use_amp": false,
35
+ "use_peft": false,
36
+ "push_to_hub": true,
37
+ "repo_id": "orellius/so101_matchbox_reward_model",
38
+ "private": null,
39
+ "tags": null,
40
+ "license": null,
41
+ "name": "reward_classifier",
42
+ "num_classes": 2,
43
+ "hidden_dim": 256,
44
+ "latent_dim": 256,
45
+ "image_embedding_pooling_dim": 8,
46
+ "dropout_rate": 0.1,
47
+ "model_name": "helper2424/resnet10",
48
+ "model_type": "cnn",
49
+ "num_cameras": 1,
50
+ "learning_rate": 0.0001,
51
+ "weight_decay": 0.01,
52
+ "grad_clip_norm": 1.0
53
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5cf3a3ab32ec8a52374707206f3c81ef4bcec84959429572276855617fb592
3
+ size 24358612
train_config.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "hubnemo/so101_matchbox_reward",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ }
61
+ }
62
+ },
63
+ "revision": null,
64
+ "use_imagenet_stats": true,
65
+ "video_backend": "torchcodec"
66
+ },
67
+ "env": null,
68
+ "policy": {
69
+ "type": "reward_classifier",
70
+ "n_obs_steps": 1,
71
+ "normalization_mapping": {
72
+ "VISUAL": "IDENTITY",
73
+ "STATE": "MEAN_STD",
74
+ "ACTION": "MEAN_STD"
75
+ },
76
+ "input_features": {
77
+ "observation.state": {
78
+ "type": "STATE",
79
+ "shape": [
80
+ 12
81
+ ]
82
+ },
83
+ "observation.image.front": {
84
+ "type": "VISUAL",
85
+ "shape": [
86
+ 480,
87
+ 640,
88
+ 3
89
+ ]
90
+ }
91
+ },
92
+ "output_features": {
93
+ "action": {
94
+ "type": "ACTION",
95
+ "shape": [
96
+ 6
97
+ ]
98
+ }
99
+ },
100
+ "device": "mps",
101
+ "use_amp": false,
102
+ "use_peft": false,
103
+ "push_to_hub": true,
104
+ "repo_id": "orellius/so101_matchbox_reward_model",
105
+ "private": null,
106
+ "tags": null,
107
+ "license": null,
108
+ "name": "reward_classifier",
109
+ "num_classes": 2,
110
+ "hidden_dim": 256,
111
+ "latent_dim": 256,
112
+ "image_embedding_pooling_dim": 8,
113
+ "dropout_rate": 0.1,
114
+ "model_name": "helper2424/resnet10",
115
+ "model_type": "cnn",
116
+ "num_cameras": 1,
117
+ "learning_rate": 0.0001,
118
+ "weight_decay": 0.01,
119
+ "grad_clip_norm": 1.0
120
+ },
121
+ "output_dir": "outputs/train/2025-07-18/16-22-17_reward-classifier",
122
+ "job_name": "reward-classifier",
123
+ "resume": false,
124
+ "seed": 2,
125
+ "num_workers": 4,
126
+ "batch_size": 16,
127
+ "steps": 5000,
128
+ "eval_freq": 1000,
129
+ "log_freq": 10,
130
+ "save_checkpoint": true,
131
+ "save_freq": 1000,
132
+ "use_validation": false,
133
+ "val_split": 0.05,
134
+ "val_freq": 10000,
135
+ "val_batch_size": 16,
136
+ "use_policy_training_preset": true,
137
+ "optimizer": {
138
+ "type": "adamw",
139
+ "lr": 0.0001,
140
+ "weight_decay": 0.01,
141
+ "grad_clip_norm": 1.0,
142
+ "betas": [
143
+ 0.9,
144
+ 0.999
145
+ ],
146
+ "eps": 1e-08
147
+ },
148
+ "scheduler": null,
149
+ "eval": {
150
+ "n_episodes": 50,
151
+ "batch_size": 50,
152
+ "use_async_envs": false
153
+ },
154
+ "wandb": {
155
+ "enable": true,
156
+ "disable_artifact": false,
157
+ "project": "reward-classifier",
158
+ "entity": null,
159
+ "notes": null,
160
+ "run_id": "gr20qb07",
161
+ "mode": null
162
+ },
163
+ "use_peft": false,
164
+ "peft": {
165
+ "target_modules": null,
166
+ "modules_to_save": null,
167
+ "method_type": "LORA",
168
+ "init_type": null,
169
+ "r": 16
170
+ }
171
+ }