Omartificial-Intelligence-Space commited on
Commit
3bdea50
·
verified ·
1 Parent(s): cd29c20

Upload 17 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,393 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:2964
9
+ - loss:MatryoshkaLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: Omartificial-Intelligence-Space/SA-BERT-V1
12
+ widget:
13
+ - source_sentence: كم تكلفة رحلة بحرية ليوم؟
14
+ sentences:
15
+ - الباحثين يحلّلوا تأثير البيئة على اختلاف العادات بين المناطق.
16
+ - أبي محلات فيها بضاعة عالمية مشهورة.
17
+ - بكم أسعار الجولات البحرية اليومية؟
18
+ - source_sentence: الفعاليات الشعبية تختلف حسب المناسبات.
19
+ sentences:
20
+ - معطف المختبر حقي اختفى وأبي أشتري بديل
21
+ - بحط كل البنود المطلوبة وبراجع الميزانية عشان نرفع الطلب
22
+ - بعض المناطق تتميز بطرق احتفال خاصة بها.
23
+ - source_sentence: الأسوار القديمة كانت تحمي المدن زمان.
24
+ sentences:
25
+ - بجلس أصلّحها قبل أرسلها
26
+ - بعض المدن احتفظت بأبوابها التاريخية.
27
+ - بجلس أشتغل عليها وسط اليوم
28
+ - source_sentence: ودي أجرب رحلة سفاري بصحراء الربع الخالي
29
+ sentences:
30
+ - أبغى أشارك بجولة سفاري بالربع الخالي
31
+ - هذا التمرين ضروري لنحت منطقة البطن والخصر.
32
+ - ودي أعرف عن فنادق فخمة بالدمام
33
+ - source_sentence: أبي طرحة جديدة لونها سماوي فاتح.
34
+ sentences:
35
+ - المشاوي عندهم متبلة صح وتحسها طازجة
36
+ - ريحة المعطرات هذي قوية وتقعد في الغرف؟
37
+ - أدور شيلة لونها أزرق فاتح زي السماء.
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ ---
41
+
42
+ # SentenceTransformer based on Omartificial-Intelligence-Space/SA-BERT-V1
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Omartificial-Intelligence-Space/SA-BERT-V1](https://huggingface.co/Omartificial-Intelligence-Space/SA-BERT-V1) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [Omartificial-Intelligence-Space/SA-BERT-V1](https://huggingface.co/Omartificial-Intelligence-Space/SA-BERT-V1) <!-- at revision 266a9bff6cb49557c9d5c8972986338d118ddc22 -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 768 dimensions
53
+ - **Similarity Function:** Cosine Similarity
54
+ - **Training Dataset:**
55
+ - csv
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("sentence_transformers_model_id")
90
+ # Run inference
91
+ sentences = [
92
+ 'أبي طرحة جديدة لونها سماوي فاتح.',
93
+ 'أدور شيلة لونها أزرق فاتح زي السماء.',
94
+ 'المشاوي عندهم متبلة صح وتحسها طازجة',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities)
103
+ # tensor([[ 1.0000, 0.7992, -0.0248],
104
+ # [ 0.7992, 1.0000, -0.0435],
105
+ # [-0.0248, -0.0435, 1.0000]])
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Dataset
147
+
148
+ #### csv
149
+
150
+ * Dataset: csv
151
+ * Size: 2,964 training samples
152
+ * Columns: <code>text1</code> and <code>text2</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | text1 | text2 |
155
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
156
+ | type | string | string |
157
+ | details | <ul><li>min: 5 tokens</li><li>mean: 9.54 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.45 tokens</li><li>max: 16 tokens</li></ul> |
158
+ * Samples:
159
+ | text1 | text2 |
160
+ |:-------------------------------------------------------|:----------------------------------------------------|
161
+ | <code>هل فيه رحلات بحرية للأطفال في جدة؟</code> | <code>ودي أعرف عن جولات بحرية للأطفال في جدة</code> |
162
+ | <code>ودي أحجز تذكرة طيران للرياض الأسبوع الجاي</code> | <code>ناوي أشتري تذكرة للرياض الأسبوع الجاي</code> |
163
+ | <code>عطوني أفضل فندق قريب من مطار جدة</code> | <code>أبي فندق قريب من المطار</code> |
164
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
165
+ ```json
166
+ {
167
+ "loss": "MultipleNegativesRankingLoss",
168
+ "matryoshka_dims": [
169
+ 768
170
+ ],
171
+ "matryoshka_weights": [
172
+ 1
173
+ ],
174
+ "n_dims_per_step": -1
175
+ }
176
+ ```
177
+
178
+ ### Training Hyperparameters
179
+ #### Non-Default Hyperparameters
180
+
181
+ - `per_device_train_batch_size`: 16
182
+ - `warmup_ratio`: 0.1
183
+ - `fp16`: True
184
+ - `batch_sampler`: no_duplicates
185
+
186
+ #### All Hyperparameters
187
+ <details><summary>Click to expand</summary>
188
+
189
+ - `overwrite_output_dir`: False
190
+ - `do_predict`: False
191
+ - `eval_strategy`: no
192
+ - `prediction_loss_only`: True
193
+ - `per_device_train_batch_size`: 16
194
+ - `per_device_eval_batch_size`: 8
195
+ - `per_gpu_train_batch_size`: None
196
+ - `per_gpu_eval_batch_size`: None
197
+ - `gradient_accumulation_steps`: 1
198
+ - `eval_accumulation_steps`: None
199
+ - `torch_empty_cache_steps`: None
200
+ - `learning_rate`: 5e-05
201
+ - `weight_decay`: 0.0
202
+ - `adam_beta1`: 0.9
203
+ - `adam_beta2`: 0.999
204
+ - `adam_epsilon`: 1e-08
205
+ - `max_grad_norm`: 1.0
206
+ - `num_train_epochs`: 3
207
+ - `max_steps`: -1
208
+ - `lr_scheduler_type`: linear
209
+ - `lr_scheduler_kwargs`: {}
210
+ - `warmup_ratio`: 0.1
211
+ - `warmup_steps`: 0
212
+ - `log_level`: passive
213
+ - `log_level_replica`: warning
214
+ - `log_on_each_node`: True
215
+ - `logging_nan_inf_filter`: True
216
+ - `save_safetensors`: True
217
+ - `save_on_each_node`: False
218
+ - `save_only_model`: False
219
+ - `restore_callback_states_from_checkpoint`: False
220
+ - `no_cuda`: False
221
+ - `use_cpu`: False
222
+ - `use_mps_device`: False
223
+ - `seed`: 42
224
+ - `data_seed`: None
225
+ - `jit_mode_eval`: False
226
+ - `bf16`: False
227
+ - `fp16`: True
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `parallelism_config`: None
253
+ - `deepspeed`: None
254
+ - `label_smoothing_factor`: 0.0
255
+ - `optim`: adamw_torch_fused
256
+ - `optim_args`: None
257
+ - `adafactor`: False
258
+ - `group_by_length`: False
259
+ - `length_column_name`: length
260
+ - `project`: huggingface
261
+ - `trackio_space_id`: trackio
262
+ - `ddp_find_unused_parameters`: None
263
+ - `ddp_bucket_cap_mb`: None
264
+ - `ddp_broadcast_buffers`: False
265
+ - `dataloader_pin_memory`: True
266
+ - `dataloader_persistent_workers`: False
267
+ - `skip_memory_metrics`: True
268
+ - `use_legacy_prediction_loop`: False
269
+ - `push_to_hub`: False
270
+ - `resume_from_checkpoint`: None
271
+ - `hub_model_id`: None
272
+ - `hub_strategy`: every_save
273
+ - `hub_private_repo`: None
274
+ - `hub_always_push`: False
275
+ - `hub_revision`: None
276
+ - `gradient_checkpointing`: False
277
+ - `gradient_checkpointing_kwargs`: None
278
+ - `include_inputs_for_metrics`: False
279
+ - `include_for_metrics`: []
280
+ - `eval_do_concat_batches`: True
281
+ - `fp16_backend`: auto
282
+ - `push_to_hub_model_id`: None
283
+ - `push_to_hub_organization`: None
284
+ - `mp_parameters`:
285
+ - `auto_find_batch_size`: False
286
+ - `full_determinism`: False
287
+ - `torchdynamo`: None
288
+ - `ray_scope`: last
289
+ - `ddp_timeout`: 1800
290
+ - `torch_compile`: False
291
+ - `torch_compile_backend`: None
292
+ - `torch_compile_mode`: None
293
+ - `include_tokens_per_second`: False
294
+ - `include_num_input_tokens_seen`: no
295
+ - `neftune_noise_alpha`: None
296
+ - `optim_target_modules`: None
297
+ - `batch_eval_metrics`: False
298
+ - `eval_on_start`: False
299
+ - `use_liger_kernel`: False
300
+ - `liger_kernel_config`: None
301
+ - `eval_use_gather_object`: False
302
+ - `average_tokens_across_devices`: True
303
+ - `prompts`: None
304
+ - `batch_sampler`: no_duplicates
305
+ - `multi_dataset_batch_sampler`: proportional
306
+ - `router_mapping`: {}
307
+ - `learning_rate_mapping`: {}
308
+
309
+ </details>
310
+
311
+ ### Training Logs
312
+ | Epoch | Step | Training Loss |
313
+ |:------:|:----:|:-------------:|
314
+ | 0.2688 | 50 | 2.7131 |
315
+ | 0.5376 | 100 | 2.2691 |
316
+ | 0.8065 | 150 | 0.7322 |
317
+ | 1.0753 | 200 | 0.3116 |
318
+ | 1.3441 | 250 | 0.1814 |
319
+ | 1.6129 | 300 | 0.1889 |
320
+ | 1.8817 | 350 | 0.1983 |
321
+ | 2.1505 | 400 | 0.1158 |
322
+ | 2.4194 | 450 | 0.0726 |
323
+ | 2.6882 | 500 | 0.07 |
324
+ | 2.9570 | 550 | 0.0833 |
325
+
326
+
327
+ ### Framework Versions
328
+ - Python: 3.12.12
329
+ - Sentence Transformers: 5.1.2
330
+ - Transformers: 4.57.2
331
+ - PyTorch: 2.9.0+cu126
332
+ - Accelerate: 1.12.0
333
+ - Datasets: 4.0.0
334
+ - Tokenizers: 0.22.1
335
+
336
+ ## Citation
337
+
338
+ ### BibTeX
339
+
340
+ #### Sentence Transformers
341
+ ```bibtex
342
+ @inproceedings{reimers-2019-sentence-bert,
343
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
344
+ author = "Reimers, Nils and Gurevych, Iryna",
345
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
346
+ month = "11",
347
+ year = "2019",
348
+ publisher = "Association for Computational Linguistics",
349
+ url = "https://arxiv.org/abs/1908.10084",
350
+ }
351
+ ```
352
+
353
+ #### MatryoshkaLoss
354
+ ```bibtex
355
+ @misc{kusupati2024matryoshka,
356
+ title={Matryoshka Representation Learning},
357
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
358
+ year={2024},
359
+ eprint={2205.13147},
360
+ archivePrefix={arXiv},
361
+ primaryClass={cs.LG}
362
+ }
363
+ ```
364
+
365
+ #### MultipleNegativesRankingLoss
366
+ ```bibtex
367
+ @misc{henderson2017efficient,
368
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
369
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
370
+ year={2017},
371
+ eprint={1705.00652},
372
+ archivePrefix={arXiv},
373
+ primaryClass={cs.CL}
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "dtype": "float32",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "transformers_version": "4.57.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 100000
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.2",
5
+ "transformers": "4.57.2",
6
+ "pytorch": "2.9.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93158a1dcd92867a568fe9e5a4c97427367da01b7b4e6f5a8369b61c2d69a616
3
+ size 651387752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e68c50f997af6211ed775cb76fda7519572365a4fc30057f8c5a9c660fbbed9c
3
+ size 1298174027
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9247946777816dcf24d06f58bb616fdd645b6da2e67a260204a96d47038ec665
3
+ size 14645
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6493c213e9711d83c8bde054ec49dee0ec6e3d3af04f25534efa57248675b4
3
+ size 1383
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b20569a1815184e9dfde701c2981d99a676bf34ccc3abdf2fbeeac9fd804056
3
+ size 1465
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
trainer_state.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 558,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.26881720430107525,
14
+ "grad_norm": 0.35296472907066345,
15
+ "learning_rate": 4.375e-05,
16
+ "loss": 2.7131,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.5376344086021505,
21
+ "grad_norm": 46.055992126464844,
22
+ "learning_rate": 4.5717131474103586e-05,
23
+ "loss": 2.2691,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.8064516129032258,
28
+ "grad_norm": 85.04060363769531,
29
+ "learning_rate": 4.073705179282869e-05,
30
+ "loss": 0.7322,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 1.075268817204301,
35
+ "grad_norm": 7.298253059387207,
36
+ "learning_rate": 3.5756972111553785e-05,
37
+ "loss": 0.3116,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 1.3440860215053765,
42
+ "grad_norm": 17.628334045410156,
43
+ "learning_rate": 3.0776892430278885e-05,
44
+ "loss": 0.1814,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 1.6129032258064515,
49
+ "grad_norm": 24.634273529052734,
50
+ "learning_rate": 2.5796812749003984e-05,
51
+ "loss": 0.1889,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 1.881720430107527,
56
+ "grad_norm": 7.957954406738281,
57
+ "learning_rate": 2.0816733067729087e-05,
58
+ "loss": 0.1983,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 2.150537634408602,
63
+ "grad_norm": 6.165184497833252,
64
+ "learning_rate": 1.5836653386454183e-05,
65
+ "loss": 0.1158,
66
+ "step": 400
67
+ },
68
+ {
69
+ "epoch": 2.4193548387096775,
70
+ "grad_norm": 1.3016605377197266,
71
+ "learning_rate": 1.0856573705179284e-05,
72
+ "loss": 0.0726,
73
+ "step": 450
74
+ },
75
+ {
76
+ "epoch": 2.688172043010753,
77
+ "grad_norm": 0.6304020285606384,
78
+ "learning_rate": 5.8764940239043834e-06,
79
+ "loss": 0.07,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 2.956989247311828,
84
+ "grad_norm": 23.746200561523438,
85
+ "learning_rate": 8.964143426294822e-07,
86
+ "loss": 0.0833,
87
+ "step": 550
88
+ }
89
+ ],
90
+ "logging_steps": 50,
91
+ "max_steps": 558,
92
+ "num_input_tokens_seen": 0,
93
+ "num_train_epochs": 3,
94
+ "save_steps": 500,
95
+ "stateful_callbacks": {
96
+ "TrainerControl": {
97
+ "args": {
98
+ "should_epoch_stop": false,
99
+ "should_evaluate": false,
100
+ "should_log": false,
101
+ "should_save": true,
102
+ "should_training_stop": true
103
+ },
104
+ "attributes": {}
105
+ }
106
+ },
107
+ "total_flos": 0.0,
108
+ "train_batch_size": 16,
109
+ "trial_name": null,
110
+ "trial_params": null
111
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e621ef2281162817d7afa730880f6e689f1eca9971c22f32cefff99b7be815d
3
+ size 6161
vocab.txt ADDED
The diff for this file is too large to render. See raw diff