--- license: apache-2.0 tags: - trocr - math-ocr - handwritten-math - latex - computer-vision - image-to-text datasets: - custom-math-dataset --- # TrOCR Fine-tuned for Mathematical Expressions This model is a fine-tuned version of [fhswf/TrOCR_Math_handwritten](https://huggingface.co/fhswf/TrOCR_Math_handwritten) for recognizing handwritten mathematical expressions and converting them to LaTeX format. ## Model Description - **Architecture**: VisionEncoderDecoder (ViT + Transformer) - **Base Model**: fhswf/TrOCR_Math_handwritten - **Training Data**: Custom mathematical expressions dataset - **Purpose**: Convert images of mathematical equations to LaTeX code ## Intended Uses - Digitizing handwritten math equations - Educational applications - Scientific document processing - Math notation recognition ## Usage ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image processor = TrOCRProcessor.from_pretrained("Ntsako12/TrOCR_Tuned") model = VisionEncoderDecoderModel.from_pretrained("Ntsako12/TrOCR_Tuned") image = Image.open("math_equation.jpg").convert("RGB") pixel_values = processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) # Output: rac{1}{2} + rac{3}{4} Training Epochs: 10 Batch Size: 16 Learning Rate: 5e-5 Framework: PyTorch with Hugging Face Transformers Limitations Performance may vary with different handwriting styles Complex nested expressions might be challenging Requires clear, well-written mathematical expressions