--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:369891 - loss:TripletLoss base_model: jinaai/jina-embeddings-v3 widget: - source_sentence: Echoes in the Alley is evolving into this brooding masterpiece, and heightening Jax's voice has me buzzing—let's iterate on a sample monologue to make it sing with poetic rhythm! sentences: - Sam, the lead researcher, strongly advocated in the last team meeting for temporarily excluding the Hawaii lab's pH data from the primary analysis until the September 15th deadline. - Maria has a strong, established working relationship with the in-house data science team, who recently developed a proprietary lookalike modeling tool that integrates directly with the existing ad platform. - In a previous collaboration, Taylor's roommate, cast as Jax, delivered a standout improvised monologue during a poetry reading event that captured the character's vulnerability without any scripted props, earning praise from peers for its raw authenticity. - source_sentence: Can you model the critical path impact if we delay contractor onboarding until September 1st? sentences: - Eleanor volunteers 20 hours a week at the local animal shelter and values community engagement much higher than maximizing every dollar of tax savings. - The $10,000/week contractor specializes in backend database scaling, not the UI/UX features Alex needs built before the October demo. - Alex's long-term goal is to secure Series A funding within 18 months, which requires establishing a reputation for reliable, on-time delivery of all milestones. - source_sentence: I'm anxious that winter rains could delay test drives for used SUVs. sentences: - Robert's daughter, an insurance claims adjuster, offered to take a week off work in late November to help him thoroughly inspect and negotiate the final purchase, as she has expertise in contracts. - Harold's long-term goal, shared with Evelyn, is to ensure their grandchildren (Sarah's children) spend quality time with Evelyn every summer to learn about local history, a tradition they deeply value. - Robert is actively reading reviews comparing the safety ratings of 2023 SUV models versus 2024 models regarding their performance in heavy downpours. - source_sentence: With only six months until my deadline and grading piling up at school, this plot hole is keeping me up at night; any ideas for weaving in the partner's death more subtly in Book 2 without retconning? sentences: - Liam secretly paid off Mia's outstanding student loan debt ($4,500) three months ago as a surprise, not wanting her to worry about it anymore. - Sofia is actively applying for a prestigious $10,000 regional arts grant next month, which specifically funds community-focused, educational digital media. - Maria's editor at the publishing house is a former detective novelist who insists on psychological realism in character backstories, having rejected an earlier submission from Maria for lacking emotional depth in grief portrayal. - source_sentence: Preparing instructions for potential Brazilian yoga classes excites me—could you curate a professional list of Portuguese phrases for guiding poses and breathing exercises? sentences: - The previous attempt at self-study failed because Liam found the standard textbook pronunciation guide recordings to be grating and overly formal, leading him to stop practicing after two weeks. - Rosa secretly purchased a high-end, lightweight portable folding chair specifically designed for extended standing/sitting comfort at outdoor events last month. - Chloe has a documented, severe anxiety disorder requiring her to maintain a structured, predictable routine; sudden, high-stress financial calculations or immediate high-stakes decisions trigger significant health setbacks. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on jinaai/jina-embeddings-v3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (transformer): Transformer( (auto_model): PeftModelForFeatureExtraction( (base_model): LoraModel( (model): XLMRobertaLoRA( (roberta): XLMRobertaModel( (embeddings): XLMRobertaEmbeddings( (word_embeddings): ParametrizedEmbedding( 250002, 1024, padding_idx=1 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (token_type_embeddings): ParametrizedEmbedding( 1, 1024 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (emb_drop): Dropout(p=0.1, inplace=False) (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (encoder): XLMRobertaEncoder( (layers): ModuleList( (0-23): 24 x Block( (mixer): MHA( (rotary_emb): RotaryEmbedding() (Wqkv): ParametrizedLinearResidual( in_features=1024, out_features=3072, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (inner_attn): SelfAttention( (drop): Dropout(p=0.1, inplace=False) ) (inner_cross_attn): CrossAttention( (drop): Dropout(p=0.1, inplace=False) ) (out_proj): lora.Linear( (base_layer): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=1024, out_features=32, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=32, out_features=1024, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (dropout1): Dropout(p=0.1, inplace=False) (drop_path1): StochasticDepth(p=0.0, mode=row) (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (mlp): Mlp( (fc1): lora.Linear( (base_layer): ParametrizedLinear( in_features=1024, out_features=4096, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=1024, out_features=32, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=32, out_features=4096, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (fc2): lora.Linear( (base_layer): ParametrizedLinear( in_features=4096, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=32, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=32, out_features=1024, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (dropout2): Dropout(p=0.1, inplace=False) (drop_path2): StochasticDepth(p=0.0, mode=row) (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) (pooler): XLMRobertaPooler( (dense): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (activation): Tanh() ) ) ) ) ) ) (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (normalizer): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Mercity/memory-retrieval-jina-v3-lora") # Run inference sentences = [ 'Preparing instructions for potential Brazilian yoga classes excites me—could you curate a professional list of Portuguese phrases for guiding poses and breathing exercises?', 'The previous attempt at self-study failed because Liam found the standard textbook pronunciation guide recordings to be grating and overly formal, leading him to stop practicing after two weeks.', 'Chloe has a documented, severe anxiety disorder requiring her to maintain a structured, predictable routine; sudden, high-stress financial calculations or immediate high-stakes decisions trigger significant health setbacks.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[ 1.0000, 0.8699, -0.1061], # [ 0.8699, 1.0000, -0.1572], # [-0.1061, -0.1572, 1.0000]]) ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 369,891 training samples * Columns: sentence_0, sentence_1, and sentence_2 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | To achieve sufficient relaxation by 11 PM after a demanding shift, suggest budget-conscious, non-stimulating pursuits that differ from audiobooks and suit my solo living situation. | Alex has been working on mastering the art of traditional ink drawing (Sumi-e) as a meditative hobby, which requires minimal light and focus. | Maria has set a personal milestone to donate 10% of her memoir's first-year royalties to a burnout recovery nonprofit, tying her publication success directly to the book's perceived authenticity and impact. | | I'm so pumped about this new grammar series—it's going to make such a difference for my subscribers who keep mixing up noun genders! Can you brainstorm ways to animate those common pitfalls like the -o ending myth? | The beta group overwhelmingly preferred short, character-driven skits over abstract quizzes, specifically mentioning that the last tutorial that relied heavily on on-screen text overlays resulted in lower engagement. | Alex previously boosted his geometry understanding on the SAT by reviewing sample test questions daily during short 30-minute sessions after school. | | Jamal pushes safe bets, yet deadline looms like a storm—verify this claim? | Maria received an internal promotion review last week, and exceeding expectations on this presentation is the single biggest factor determining her eligibility for the Senior Manager role opening in January. | Jamal is currently bogged down trying to reconcile conflicting Q3 sales data from three different regional offices, which he finds deeply frustrating. | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 1 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0433 | 500 | 0.2143 | | 0.0865 | 1000 | 0.1182 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 5.1.2 - Transformers: 4.57.1 - PyTorch: 2.8.0+cu128 - Accelerate: 1.11.0 - Datasets: 4.4.1 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```