Update README.md
Browse files
README.md
CHANGED
|
@@ -28,16 +28,16 @@ You can use the raw model for video classification into one of the 400 possible
|
|
| 28 |
Here is how to use this model to classify a video:
|
| 29 |
|
| 30 |
```python
|
| 31 |
-
from transformers import
|
| 32 |
import numpy as np
|
| 33 |
import torch
|
| 34 |
|
| 35 |
video = list(np.random.randn(16, 3, 224, 224))
|
| 36 |
|
| 37 |
-
|
| 38 |
model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-ssv2")
|
| 39 |
|
| 40 |
-
inputs =
|
| 41 |
|
| 42 |
with torch.no_grad():
|
| 43 |
outputs = model(**inputs)
|
|
|
|
| 28 |
Here is how to use this model to classify a video:
|
| 29 |
|
| 30 |
```python
|
| 31 |
+
from transformers import VideoMAEImageProcessor, VideoMAEForVideoClassification
|
| 32 |
import numpy as np
|
| 33 |
import torch
|
| 34 |
|
| 35 |
video = list(np.random.randn(16, 3, 224, 224))
|
| 36 |
|
| 37 |
+
processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-ssv2")
|
| 38 |
model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-ssv2")
|
| 39 |
|
| 40 |
+
inputs = processor(video, return_tensors="pt")
|
| 41 |
|
| 42 |
with torch.no_grad():
|
| 43 |
outputs = model(**inputs)
|