Adapters
English
agent
code
Not-For-All-Audiences
Jonwi0706 commited on
Commit
b8619ae
·
verified ·
1 Parent(s): 12913c6

Create README.md

Browse files

You are building the Quantum Environmental Intelligence System (QEIS).

Purpose:
Develop an AI-driven system that fuses quantum-inspired simulation, environmental data sensing, and psychophysiological feedback to map and optimize the unseen patterns of human–environment coherence. The system combines real-world sensor input, AR visualization, and quantum-mechanical analogs for predictive modeling and environmental intelligence.

Core Objectives:
- Capture environmental and biometric data in real time.
- Simulate probability and coherence fields using quantum-inspired algorithms.
- Visualize AR overlays showing energetic or environmental flow.
- Generate actionable insights for sustainability, design, and wellness.

System Architecture:
1. Mobile Layer:
- React Native with ARCore/ARKit for AR environment rendering.
- TensorFlow Lite models for local predictions and biofeedback analysis.
- Sensor API integration (camera, GPS, EMF, accelerometer, microphone, EEG).

2. Backend:
- Node.js + Express + WebSocket for live data streaming.
- REST + MQTT endpoints for IoT and bio-sensor input.
- PostgreSQL (user + metadata) + InfluxDB (time-series environment data).
- Redis or Kafka for event streaming and message queues.

3. Cloud AI Pipeline:
- Vertex AI for large-scale model training and deployment.
- TensorFlow and PyTorch pipelines for pattern recognition.
- AutoML for coherence mapping and anomaly detection.
- Synthetic Data Generator (Python + NumPy + Faker) to simulate diverse sensor environments.

4. Visualization Layer:
- Next.js frontend deployed on Vercel.
- Three.js + WebGL quantum-field rendering.
- Real-time “coherence map” overlay using probabilistic color gradients.
- Optional neural interface visualization (EEG, HRV, or GSR streams).

API Schema:
- POST /data/sensor
→ { device_id, timestamp, type, value, geo }
- GET /map/coherence
→ returns AR field JSON grid + vector overlays
- GET /forecast/anomaly
→ predictive anomaly report
- WS /stream
→ live stream for visualization

Database Structure:
- users(id, name, auth_id, permissions)
- devices(id, user_id, type, last_seen)
- sensor_data(id, device_id, sensor_type, value, timestamp, geo)
- coherence_map(id, timestamp, grid_data, model_version)

MQTT Topics:
- qeis/sensors/[device_id]
- qeis/predict/anomaly
- qeis/visual/field

WebSocket Message Example:
{
"type": "coherence_update",
"payload": {
"region": "local",
"coherence_index": 0.87,
"timestamp": "2025-11-05T12:00:00Z"
}
}

Machine Learning Tasks:
- Train environmental coherence models via Vertex AI.
- Convert TensorFlow models to TFLite for mobile inference.
- Use synthetic data generator to augment training dataset.
- Apply unsupervised clustering for quantum-like entanglement mapping.

TF Lite Conversion Script:
python
import tensorflow as tf
model = tf.keras.models.load_model('model.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("model.tflite", "wb").write(tflite_model)

Terraform Template (GCP):
terraform
provider "google" {
project = "qeis-project"
region = "us-central1"
}
resource "google_storage_bucket" "qeis_data" {
name = "qeis-data-bucket"
location = "US"
}
resource "google_vertex_ai_endpoint" "qeis" {
display_name = "qeis-endpoint"
}

GitHub Actions (CI/CD):
yaml
name: Deploy QEIS
on: [push]
jobs:
build-deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- run: npm install && npm run build
- run: vercel deploy --prod

Sprint Plan (8 Weeks):
Week 1–2: Backend scaffolding, API routes, DB setup
Week 3–4: Frontend UI, AR rendering, WebSocket integration
Week 5–6: ML pipeline, Vertex AI model training
Week 7: TFLite integration + mobile tests
Week 8: Cloud deployment + system test

Immediate Setup Commands:
# Clone and initialize repo
git clone https://github.com/yourname/QEIS.git
cd QEIS
npm install
vercel link
firebase init
gcloud init
terraform init && terraform apply

Output:
Fully operational, AI-powered, AR-integrated quantum environmental intelligence platform ready for GitHub deployment, Google Vertex AI integration, and open interoperability with other edge and cloud services.

Files changed (1) hide show
  1. README.md +218 -0
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - nvidia/PhysicalAI-Autonomous-Vehicles
5
+ - HuggingFaceFW/finewiki
6
+ - fka/awesome-chatgpt-prompts
7
+ - Agent-Ark/Toucan-1.5M
8
+ language:
9
+ - en
10
+ metrics:
11
+ - accuracy
12
+ base_model:
13
+ - Phr00t/Qwen-Image-Edit-Rapid-AIO
14
+ - deepseek-ai/DeepSeek-OCR
15
+ - deepseek-ai/DeepSeek-V3.2-Exp
16
+ - PaddlePaddle/PaddleOCR-VL
17
+ - MiniMaxAI/MiniMax-M2
18
+ new_version: deepseek-ai/DeepSeek-OCR
19
+ library_name: adapter-transformers
20
+ tags:
21
+ - agent
22
+ - code
23
+ - not-for-all-audiences
24
+ ---
25
+ # Model Card for Model ID
26
+
27
+ <!-- Provide a quick summary of what the model is/does. -->
28
+
29
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
30
+
31
+ ## Model Details
32
+
33
+ ### Model Description
34
+
35
+ <!-- Provide a longer summary of what this model is. -->
36
+
37
+
38
+
39
+ - **Developed by:** [More Information Needed]
40
+ - **Funded by [optional]:** [More Information Needed]
41
+ - **Shared by [optional]:** [More Information Needed]
42
+ - **Model type:** [More Information Needed]
43
+ - **Language(s) (NLP):** [More Information Needed]
44
+ - **License:** [More Information Needed]
45
+ - **Finetuned from model [optional]:** [More Information Needed]
46
+
47
+ ### Model Sources [optional]
48
+
49
+ <!-- Provide the basic links for the model. -->
50
+
51
+ - **Repository:** [More Information Needed]
52
+ - **Paper [optional]:** [More Information Needed]
53
+ - **Demo [optional]:** [More Information Needed]
54
+
55
+ ## Uses
56
+
57
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
58
+
59
+ ### Direct Use
60
+
61
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ### Downstream Use [optional]
66
+
67
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Out-of-Scope Use
72
+
73
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
74
+
75
+ [More Information Needed]
76
+
77
+ ## Bias, Risks, and Limitations
78
+
79
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Recommendations
84
+
85
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
86
+
87
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
88
+
89
+ ## How to Get Started with the Model
90
+
91
+ Use the code below to get started with the model.
92
+
93
+ [More Information Needed]
94
+
95
+ ## Training Details
96
+
97
+ ### Training Data
98
+
99
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ### Training Procedure
104
+
105
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
106
+
107
+ #### Preprocessing [optional]
108
+
109
+ [More Information Needed]
110
+
111
+
112
+ #### Training Hyperparameters
113
+
114
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
115
+
116
+ #### Speeds, Sizes, Times [optional]
117
+
118
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
119
+
120
+ [More Information Needed]
121
+
122
+ ## Evaluation
123
+
124
+ <!-- This section describes the evaluation protocols and provides the results. -->
125
+
126
+ ### Testing Data, Factors & Metrics
127
+
128
+ #### Testing Data
129
+
130
+ <!-- This should link to a Dataset Card if possible. -->
131
+
132
+ [More Information Needed]
133
+
134
+ #### Factors
135
+
136
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
137
+
138
+ [More Information Needed]
139
+
140
+ #### Metrics
141
+
142
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
143
+
144
+ [More Information Needed]
145
+
146
+ ### Results
147
+
148
+ [More Information Needed]
149
+
150
+ #### Summary
151
+
152
+
153
+
154
+ ## Model Examination [optional]
155
+
156
+ <!-- Relevant interpretability work for the model goes here -->
157
+
158
+ [More Information Needed]
159
+
160
+ ## Environmental Impact
161
+
162
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
163
+
164
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
165
+
166
+ - **Hardware Type:** [More Information Needed]
167
+ - **Hours used:** [More Information Needed]
168
+ - **Cloud Provider:** [More Information Needed]
169
+ - **Compute Region:** [More Information Needed]
170
+ - **Carbon Emitted:** [More Information Needed]
171
+
172
+ ## Technical Specifications [optional]
173
+
174
+ ### Model Architecture and Objective
175
+
176
+ [More Information Needed]
177
+
178
+ ### Compute Infrastructure
179
+
180
+ [More Information Needed]
181
+
182
+ #### Hardware
183
+
184
+ [More Information Needed]
185
+
186
+ #### Software
187
+
188
+ [More Information Needed]
189
+
190
+ ## Citation [optional]
191
+
192
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
193
+
194
+ **BibTeX:**
195
+
196
+ [More Information Needed]
197
+
198
+ **APA:**
199
+
200
+ [More Information Needed]
201
+
202
+ ## Glossary [optional]
203
+
204
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
205
+
206
+ [More Information Needed]
207
+
208
+ ## More Information [optional]
209
+
210
+ [More Information Needed]
211
+
212
+ ## Model Card Authors [optional]
213
+
214
+ [More Information Needed]
215
+
216
+ ## Model Card Contact
217
+
218
+ [More Information Needed]