Update README.md
Browse files
README.md
CHANGED
|
@@ -12,4 +12,105 @@ tags:
|
|
| 12 |
- medical
|
| 13 |
- triage
|
| 14 |
- emergency
|
| 15 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
- medical
|
| 13 |
- triage
|
| 14 |
- emergency
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Llama-3.1-8B-Instruct-LoRA-SimSAMU
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of **[meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)** using Low-Rank Adaptation (LoRA).
|
| 20 |
+
|
| 21 |
+
It was specifically trained on the **[medkit/simsamu](https://huggingface.co/datasets/medkit/simsamu)** dataset to perform a specialized task: generating structured, task-oriented summaries from transcripts of emergency telephone calls to the French SAMU (Service d'Aide Médicale Urgente).
|
| 22 |
+
|
| 23 |
+
The methodology and task are following the work presented in the **[QUARTZ](https://arxiv.org/abs/2509.26302)** paper.
|
| 24 |
+
|
| 25 |
+
## Model Description
|
| 26 |
+
|
| 27 |
+
- **Base Model:** `meta-llama/Llama-3.1-8B-Instruct`
|
| 28 |
+
- **Dataset:** `medkit/simsamu`
|
| 29 |
+
- **Language:** French (`fr`)
|
| 30 |
+
- **Task:** The model takes a transcript of an emergency call and generates a Triage-oriented Structured Summary, extracting key information needed for medical triage and response.
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## Intended Use
|
| 35 |
+
|
| 36 |
+
This model is intended for research and development purposes in the field of medical NLP. Potential applications include:
|
| 37 |
+
- Assisting emergency call handlers by auto-generating summaries.
|
| 38 |
+
- Structuring unstructured call data for analysis.
|
| 39 |
+
- Training and simulation for medical dispatchers.
|
| 40 |
+
|
| 41 |
+
**Note:** This model is a proof of concept and should **NOT** be used in a live clinical or emergency-response setting without extensive validation. 🚨
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## How to Use
|
| 46 |
+
|
| 47 |
+
You can use this model with the `transformers` library. Make sure you are logged into your Hugging Face account and have accepted the Llama 3.1 license terms.
|
| 48 |
+
|
| 49 |
+
For more detailed examples, including the full prompts and code used, please visit the [**GitHub**](https://github.com/Mohamed-Imed-Eddine/QUARTZ) repository.
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 53 |
+
import torch
|
| 54 |
+
|
| 55 |
+
# Ensure you have logged in to Hugging Face CLI
|
| 56 |
+
# huggingface-cli login
|
| 57 |
+
|
| 58 |
+
model_id = "Imed-Ghebriout/Llama-3.1-8B-Instruct-LoRA-SimSAMU"
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
+
model_id,
|
| 62 |
+
torch_dtype=torch.bfloat16,
|
| 63 |
+
device_map="auto"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# A shortened example transcript
|
| 67 |
+
transcript = "medecin: bonjour docteur DETOURET au SAMU 93 vous appelez pour votre grand père c'est ça ?\npatient: oui c'est bien ça\nmedecin: d'accord vous êtes avec lui là ou pas ?\npatient: non non j'arrive là devant l'immeuble et je vois il y a de la fumée partout.\nmedecin: il y a des secours sur place monsieur ?\npatient: non non, il y a personne.\nmedecin: donc votre grand père il est à quel étage ?\npatient: il est au deuxième étage.\nmedecin: il peut se déplacer lui ou pas ?\npatient: bah je sais pas je suis pas encore rentré."
|
| 68 |
+
|
| 69 |
+
# A shortened example of the system prompt
|
| 70 |
+
system_prompt = """Vous êtes un médecin urgentiste. Votre tâche est de résumer le dialogue médical suivant sous la forme d’un compte rendu clinique précis et structuré.
|
| 71 |
+
Format du compte rapport clinique:
|
| 72 |
+
1-Motif principal de l’appel:
|
| 73 |
+
2-Contexte de l’appel:
|
| 74 |
+
3-Contexte du patient:
|
| 75 |
+
4-Traitement habituel:
|
| 76 |
+
5-Antécédents médicaux:
|
| 77 |
+
6-Symptômes du patient:
|
| 78 |
+
7-Histoire de la maladie actuelle:
|
| 79 |
+
8-Hypothèses diagnostiques:
|
| 80 |
+
9-Plan de traitement:
|
| 81 |
+
10-Décision d’orientation:"""
|
| 82 |
+
|
| 83 |
+
messages = [
|
| 84 |
+
{
|
| 85 |
+
"role": "system",
|
| 86 |
+
"content": system_prompt,
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"role": "user",
|
| 90 |
+
"content": f"Dialogue médical:\n{transcript}\n---"
|
| 91 |
+
},
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
input_ids = tokenizer.apply_chat_template(
|
| 95 |
+
messages,
|
| 96 |
+
add_generation_prompt=True,
|
| 97 |
+
return_tensors="pt"
|
| 98 |
+
).to(model.device)
|
| 99 |
+
|
| 100 |
+
terminators = [
|
| 101 |
+
tokenizer.eos_token_id,
|
| 102 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
outputs = model.generate(
|
| 106 |
+
input_ids,
|
| 107 |
+
max_new_tokens=512,
|
| 108 |
+
eos_token_id=terminators,
|
| 109 |
+
do_sample=True,
|
| 110 |
+
temperature=0.6,
|
| 111 |
+
top_p=0.9,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 115 |
+
summary = tokenizer.decode(response, skip_special_tokens=True)
|
| 116 |
+
print(summary)
|