Update README.md
Browse files
README.md
CHANGED
|
@@ -1,50 +1,70 @@
|
|
| 1 |
---
|
| 2 |
-
license:
|
| 3 |
-
language:
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
---
|
| 13 |
|
| 14 |
-
# ClinLinker
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
-
|
| 22 |
-
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
##
|
| 25 |
-
|
| 26 |
-
> Gallego, F., López-García, G., Gasco-Sánchez, L., Krallinger, M., Veredas, F.J. (2024). ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_19
|
| 27 |
-
|
| 28 |
-
## 💡 Recommended Usage
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
-
|
| 33 |
-
- Or the `FaissEncoder` utility available at [ICB-UMA/KnowledgeGraph](https://github.com/ICB-UMA/KnowledgeGraph)
|
| 34 |
|
| 35 |
-
## 🧪
|
| 36 |
|
| 37 |
```python
|
| 38 |
-
from transformers import
|
| 39 |
import torch
|
| 40 |
|
| 41 |
-
tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker")
|
| 42 |
model = AutoModel.from_pretrained("ICB-UMA/ClinLinker")
|
|
|
|
| 43 |
|
| 44 |
mention = "insuficiencia renal aguda"
|
| 45 |
-
inputs = tokenizer(mention, return_tensors="pt"
|
| 46 |
with torch.no_grad():
|
| 47 |
outputs = model(**inputs)
|
| 48 |
-
embedding = outputs.last_hidden_state[:, 0, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- es
|
| 5 |
+
base_model:
|
| 6 |
+
- PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
|
| 7 |
tags:
|
| 8 |
+
- medical
|
| 9 |
+
- spanish
|
| 10 |
+
- bi-encoder
|
| 11 |
+
- entity-linking
|
| 12 |
+
- sapbert
|
| 13 |
+
- umls
|
| 14 |
+
- snomed-ct
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# **ClinLinker**
|
| 18 |
|
| 19 |
+
## Model Description
|
| 20 |
|
| 21 |
+
ClinLinker is a state-of-the-art bi-encoder model for medical entity linking (MEL) in Spanish, optimized for clinical domain tasks. It enriches concept representations by incorporating synonyms from the UMLS and SNOMED-CT ontologies. The model was trained with a contrastive-learning strategy using hard negative mining and multi-similarity loss.
|
| 22 |
|
| 23 |
+
## 💡 Intended Use
|
| 24 |
+
- **Domain**: Spanish Clinical NLP
|
| 25 |
+
- **Tasks**: Entity linking (diseases, symptoms, procedures) to SNOMED-CT
|
| 26 |
+
- **Evaluated On**: DisTEMIST, MedProcNER, SympTEMIST
|
| 27 |
+
- **Users**: Researchers and practitioners working in clinical NLP
|
| 28 |
|
| 29 |
+
## Performance Summary (Top-25 Accuracy)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
| Model | DisTEMIST | MedProcNER | SympTEMIST |
|
| 32 |
+
|--------------------|-----------|------------|------------|
|
| 33 |
+
| **ClinLinker** | **0.845** | **0.898** | **0.909** |
|
| 34 |
+
| ClinLinker-KB-P | 0.853 | 0.891 | 0.918 |
|
| 35 |
+
| ClinLinker-KB-GP | 0.864 | 0.901 | 0.922 |
|
| 36 |
+
| SapBERT-XLM-R-large| 0.800 | 0.850 | 0.827 |
|
| 37 |
+
| RoBERTa biomedical | 0.600 | 0.668 | 0.609 |
|
| 38 |
|
| 39 |
+
*Results correspond to the cleaned gold-standard version (no "NO CODE" or "COMPOSITE").*
|
|
|
|
| 40 |
|
| 41 |
+
## 🧪 Usage
|
| 42 |
|
| 43 |
```python
|
| 44 |
+
from transformers import AutoModel, AutoTokenizer
|
| 45 |
import torch
|
| 46 |
|
|
|
|
| 47 |
model = AutoModel.from_pretrained("ICB-UMA/ClinLinker")
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker")
|
| 49 |
|
| 50 |
mention = "insuficiencia renal aguda"
|
| 51 |
+
inputs = tokenizer(mention, return_tensors="pt")
|
| 52 |
with torch.no_grad():
|
| 53 |
outputs = model(**inputs)
|
| 54 |
+
embedding = outputs.last_hidden_state[:, 0, :]
|
| 55 |
+
print(embedding.shape)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
For scalable retrieval, use [Faiss](https://github.com/facebookresearch/faiss) or the [`FaissEncoder`](https://github.com/ICB-UMA/KnowledgeGraph) class.
|
| 59 |
+
|
| 60 |
+
## Limitations
|
| 61 |
+
- The model is optimized for Spanish clinical data and may underperform outside this domain.
|
| 62 |
+
- Expert validation is advised in critical applications.
|
| 63 |
+
|
| 64 |
+
## 📚 Citation
|
| 65 |
+
|
| 66 |
+
> Gallego, F., López-García, G., Gasco-Sánchez, L., Krallinger, M., Veredas, F.J. (2024). ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_19
|
| 67 |
+
|
| 68 |
+
## Authors
|
| 69 |
|
| 70 |
+
Fernando Gallego, Guillermo López-García, Luis Gasco-Sánchez, Martin Krallinger, Francisco J Veredas
|