Heisenger commited on
Commit
8993b4f
·
verified ·
1 Parent(s): 3d0fef1

Add files using upload-large-folder tool

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../models/TinyLlama_v1.1/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5632,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 22,
18
+ "num_key_value_heads": 4,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.37.0",
26
+ "use_cache": true,
27
+ "vocab_size": 32001
28
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.37.0"
7
+ }
global_step600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f20f277258f5971463813384f3026aaa57e051850ddaf1d751e70a9c1fc1f43
3
+ size 13200649212
global_step600/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ceadcbd5b1f5d69266ccb0677848968f93c2c5837f6c8862853898e18afb1e
3
+ size 2200176684
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step600
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0792c79bdd356255af8d82f55e37be0438ff539b491945d8e2c2adee4f6acb8b
3
+ size 2200128056
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe013de392e4eb560aff64a55c98134e7587a95a39a4ad075f6a7569d8c1b9b4
3
+ size 14244
runs/events.out.tfevents.1742482264.4a167365b2f3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2338682ec211f831858768b6d21d039c0a26df5cb2ab24c311e7fafea8bf830a
3
+ size 99903
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1024,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,3653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 217.99810791015625,
3
+ "best_model_checkpoint": "./ckpts/tinyllama_v1.1/int2-g128/checkpoint-600",
4
+ "epoch": 2.0,
5
+ "eval_steps": 150,
6
+ "global_step": 600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 5773.8271,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2e-05,
20
+ "loss": 6361.1123,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2e-05,
26
+ "loss": 5510.5137,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2e-05,
32
+ "loss": 2483.1978,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 2e-05,
38
+ "loss": 2523.3491,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 2e-05,
44
+ "loss": 2417.8442,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 2e-05,
50
+ "loss": 855.7811,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 2e-05,
56
+ "loss": 1127.734,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 2e-05,
62
+ "loss": 940.725,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 2e-05,
68
+ "loss": 783.8114,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "learning_rate": 2e-05,
74
+ "loss": 720.3327,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 2e-05,
80
+ "loss": 653.4684,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 2e-05,
86
+ "loss": 565.9368,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.05,
91
+ "learning_rate": 2e-05,
92
+ "loss": 776.7609,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 2e-05,
98
+ "loss": 986.0417,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 2e-05,
104
+ "loss": 590.2695,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.06,
109
+ "learning_rate": 2e-05,
110
+ "loss": 485.4177,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 2e-05,
116
+ "loss": 493.4467,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 2e-05,
122
+ "loss": 421.5482,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.07,
127
+ "learning_rate": 2e-05,
128
+ "loss": 475.7487,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 2e-05,
134
+ "loss": 395.1753,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 2e-05,
140
+ "loss": 399.0683,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.08,
145
+ "learning_rate": 2e-05,
146
+ "loss": 449.912,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.08,
151
+ "learning_rate": 2e-05,
152
+ "loss": 505.1134,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 2e-05,
158
+ "loss": 423.8591,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.09,
163
+ "learning_rate": 2e-05,
164
+ "loss": 471.5508,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.09,
169
+ "learning_rate": 2e-05,
170
+ "loss": 327.645,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 2e-05,
176
+ "loss": 402.1392,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.1,
181
+ "learning_rate": 2e-05,
182
+ "loss": 353.8039,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.1,
187
+ "learning_rate": 2e-05,
188
+ "loss": 366.3328,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 2e-05,
194
+ "loss": 395.2348,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.11,
199
+ "learning_rate": 2e-05,
200
+ "loss": 370.4788,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.11,
205
+ "learning_rate": 2e-05,
206
+ "loss": 389.9211,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 2e-05,
212
+ "loss": 338.4554,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.12,
217
+ "learning_rate": 2e-05,
218
+ "loss": 416.246,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.12,
223
+ "learning_rate": 2e-05,
224
+ "loss": 335.4657,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 2e-05,
230
+ "loss": 324.8686,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.13,
235
+ "learning_rate": 2e-05,
236
+ "loss": 359.753,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.13,
241
+ "learning_rate": 2e-05,
242
+ "loss": 404.8,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.13,
247
+ "learning_rate": 2e-05,
248
+ "loss": 458.0917,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.14,
253
+ "learning_rate": 2e-05,
254
+ "loss": 353.8201,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.14,
259
+ "learning_rate": 2e-05,
260
+ "loss": 355.3937,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.14,
265
+ "learning_rate": 2e-05,
266
+ "loss": 361.6961,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.15,
271
+ "learning_rate": 2e-05,
272
+ "loss": 384.7435,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.15,
277
+ "learning_rate": 2e-05,
278
+ "loss": 341.7866,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.15,
283
+ "learning_rate": 2e-05,
284
+ "loss": 325.0611,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.16,
289
+ "learning_rate": 2e-05,
290
+ "loss": 373.5464,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.16,
295
+ "learning_rate": 2e-05,
296
+ "loss": 391.3689,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.16,
301
+ "learning_rate": 2e-05,
302
+ "loss": 369.0639,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.17,
307
+ "learning_rate": 2e-05,
308
+ "loss": 331.4485,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.17,
313
+ "learning_rate": 2e-05,
314
+ "loss": 386.4754,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.17,
319
+ "learning_rate": 2e-05,
320
+ "loss": 300.7639,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.18,
325
+ "learning_rate": 2e-05,
326
+ "loss": 309.7045,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.18,
331
+ "learning_rate": 2e-05,
332
+ "loss": 427.1003,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.18,
337
+ "learning_rate": 2e-05,
338
+ "loss": 491.0206,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.19,
343
+ "learning_rate": 2e-05,
344
+ "loss": 305.5411,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.19,
349
+ "learning_rate": 2e-05,
350
+ "loss": 325.358,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.19,
355
+ "learning_rate": 2e-05,
356
+ "loss": 383.5042,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.2,
361
+ "learning_rate": 2e-05,
362
+ "loss": 495.7033,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.2,
367
+ "learning_rate": 2e-05,
368
+ "loss": 359.8436,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.2,
373
+ "learning_rate": 2e-05,
374
+ "loss": 335.7679,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.21,
379
+ "learning_rate": 2e-05,
380
+ "loss": 333.6547,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.21,
385
+ "learning_rate": 2e-05,
386
+ "loss": 369.515,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.21,
391
+ "learning_rate": 2e-05,
392
+ "loss": 501.9354,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.22,
397
+ "learning_rate": 2e-05,
398
+ "loss": 348.7731,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.22,
403
+ "learning_rate": 2e-05,
404
+ "loss": 407.3716,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.22,
409
+ "learning_rate": 2e-05,
410
+ "loss": 388.8562,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.23,
415
+ "learning_rate": 2e-05,
416
+ "loss": 402.8853,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.23,
421
+ "learning_rate": 2e-05,
422
+ "loss": 325.8807,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.23,
427
+ "learning_rate": 2e-05,
428
+ "loss": 358.7309,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.24,
433
+ "learning_rate": 2e-05,
434
+ "loss": 314.6354,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.24,
439
+ "learning_rate": 2e-05,
440
+ "loss": 356.9031,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.24,
445
+ "learning_rate": 2e-05,
446
+ "loss": 278.4463,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.25,
451
+ "learning_rate": 2e-05,
452
+ "loss": 302.7334,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.25,
457
+ "learning_rate": 2e-05,
458
+ "loss": 347.0969,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.25,
463
+ "learning_rate": 2e-05,
464
+ "loss": 281.1858,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.26,
469
+ "learning_rate": 2e-05,
470
+ "loss": 300.5947,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.26,
475
+ "learning_rate": 2e-05,
476
+ "loss": 326.8865,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.26,
481
+ "learning_rate": 2e-05,
482
+ "loss": 334.2254,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.27,
487
+ "learning_rate": 2e-05,
488
+ "loss": 358.398,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.27,
493
+ "learning_rate": 2e-05,
494
+ "loss": 380.9495,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.27,
499
+ "learning_rate": 2e-05,
500
+ "loss": 252.83,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.28,
505
+ "learning_rate": 2e-05,
506
+ "loss": 332.8982,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.28,
511
+ "learning_rate": 2e-05,
512
+ "loss": 364.0591,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.28,
517
+ "learning_rate": 2e-05,
518
+ "loss": 353.0194,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.29,
523
+ "learning_rate": 2e-05,
524
+ "loss": 314.4102,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.29,
529
+ "learning_rate": 2e-05,
530
+ "loss": 332.9731,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.29,
535
+ "learning_rate": 2e-05,
536
+ "loss": 364.2653,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.3,
541
+ "learning_rate": 2e-05,
542
+ "loss": 259.5952,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.3,
547
+ "learning_rate": 2e-05,
548
+ "loss": 254.9917,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.3,
553
+ "learning_rate": 2e-05,
554
+ "loss": 256.5221,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.31,
559
+ "learning_rate": 2e-05,
560
+ "loss": 273.1299,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.31,
565
+ "learning_rate": 2e-05,
566
+ "loss": 289.5511,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.31,
571
+ "learning_rate": 2e-05,
572
+ "loss": 292.8752,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.32,
577
+ "learning_rate": 2e-05,
578
+ "loss": 290.5632,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.32,
583
+ "learning_rate": 2e-05,
584
+ "loss": 348.9591,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.32,
589
+ "learning_rate": 2e-05,
590
+ "loss": 310.7304,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.33,
595
+ "learning_rate": 2e-05,
596
+ "loss": 355.2693,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.33,
601
+ "learning_rate": 2e-05,
602
+ "loss": 295.0119,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.33,
607
+ "learning_rate": 2e-05,
608
+ "loss": 281.4653,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.34,
613
+ "learning_rate": 2e-05,
614
+ "loss": 325.7113,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.34,
619
+ "learning_rate": 2e-05,
620
+ "loss": 310.1772,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.34,
625
+ "learning_rate": 2e-05,
626
+ "loss": 289.4645,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.35,
631
+ "learning_rate": 2e-05,
632
+ "loss": 284.9719,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.35,
637
+ "learning_rate": 2e-05,
638
+ "loss": 291.3521,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.35,
643
+ "learning_rate": 2e-05,
644
+ "loss": 294.0998,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.36,
649
+ "learning_rate": 2e-05,
650
+ "loss": 315.3473,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.36,
655
+ "learning_rate": 2e-05,
656
+ "loss": 386.5405,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.36,
661
+ "learning_rate": 2e-05,
662
+ "loss": 324.626,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.37,
667
+ "learning_rate": 2e-05,
668
+ "loss": 309.3942,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.37,
673
+ "learning_rate": 2e-05,
674
+ "loss": 332.9089,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.37,
679
+ "learning_rate": 2e-05,
680
+ "loss": 318.4434,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.38,
685
+ "learning_rate": 2e-05,
686
+ "loss": 279.5007,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.38,
691
+ "learning_rate": 2e-05,
692
+ "loss": 299.7087,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.38,
697
+ "learning_rate": 2e-05,
698
+ "loss": 339.1145,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.39,
703
+ "learning_rate": 2e-05,
704
+ "loss": 313.114,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.39,
709
+ "learning_rate": 2e-05,
710
+ "loss": 384.9408,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.39,
715
+ "learning_rate": 2e-05,
716
+ "loss": 329.4101,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.4,
721
+ "learning_rate": 2e-05,
722
+ "loss": 266.9434,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.4,
727
+ "learning_rate": 2e-05,
728
+ "loss": 349.3153,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.4,
733
+ "learning_rate": 2e-05,
734
+ "loss": 299.2152,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.41,
739
+ "learning_rate": 2e-05,
740
+ "loss": 254.6638,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.41,
745
+ "learning_rate": 2e-05,
746
+ "loss": 353.7803,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.41,
751
+ "learning_rate": 2e-05,
752
+ "loss": 336.8068,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.42,
757
+ "learning_rate": 2e-05,
758
+ "loss": 244.8727,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.42,
763
+ "learning_rate": 2e-05,
764
+ "loss": 250.9102,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.42,
769
+ "learning_rate": 2e-05,
770
+ "loss": 306.2723,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.43,
775
+ "learning_rate": 2e-05,
776
+ "loss": 297.1634,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.43,
781
+ "learning_rate": 2e-05,
782
+ "loss": 300.8284,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.43,
787
+ "learning_rate": 2e-05,
788
+ "loss": 346.2424,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.44,
793
+ "learning_rate": 2e-05,
794
+ "loss": 317.494,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.44,
799
+ "learning_rate": 2e-05,
800
+ "loss": 278.0762,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.44,
805
+ "learning_rate": 2e-05,
806
+ "loss": 387.448,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.45,
811
+ "learning_rate": 2e-05,
812
+ "loss": 295.659,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.45,
817
+ "learning_rate": 2e-05,
818
+ "loss": 248.9755,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.45,
823
+ "learning_rate": 2e-05,
824
+ "loss": 276.8231,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.46,
829
+ "learning_rate": 2e-05,
830
+ "loss": 240.1871,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.46,
835
+ "learning_rate": 2e-05,
836
+ "loss": 286.2157,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.46,
841
+ "learning_rate": 2e-05,
842
+ "loss": 264.3008,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.47,
847
+ "learning_rate": 2e-05,
848
+ "loss": 275.0594,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.47,
853
+ "learning_rate": 2e-05,
854
+ "loss": 318.6325,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.47,
859
+ "learning_rate": 2e-05,
860
+ "loss": 343.2183,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.48,
865
+ "learning_rate": 2e-05,
866
+ "loss": 286.0394,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.48,
871
+ "learning_rate": 2e-05,
872
+ "loss": 388.476,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.48,
877
+ "learning_rate": 2e-05,
878
+ "loss": 324.6236,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.49,
883
+ "learning_rate": 2e-05,
884
+ "loss": 306.4463,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.49,
889
+ "learning_rate": 2e-05,
890
+ "loss": 320.8977,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.49,
895
+ "learning_rate": 2e-05,
896
+ "loss": 321.3353,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.5,
901
+ "learning_rate": 2e-05,
902
+ "loss": 283.8933,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.5,
907
+ "learning_rate": 2e-05,
908
+ "loss": 277.131,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.5,
913
+ "eval_loss": 311.9327087402344,
914
+ "eval_runtime": 287.3484,
915
+ "eval_samples_per_second": 16.704,
916
+ "eval_steps_per_second": 1.044,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.5,
921
+ "learning_rate": 2e-05,
922
+ "loss": 369.017,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.51,
927
+ "learning_rate": 2e-05,
928
+ "loss": 333.5858,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.51,
933
+ "learning_rate": 2e-05,
934
+ "loss": 260.8406,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.51,
939
+ "learning_rate": 2e-05,
940
+ "loss": 406.8607,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.52,
945
+ "learning_rate": 2e-05,
946
+ "loss": 294.3548,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.52,
951
+ "learning_rate": 2e-05,
952
+ "loss": 234.9642,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.52,
957
+ "learning_rate": 2e-05,
958
+ "loss": 355.0019,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.53,
963
+ "learning_rate": 2e-05,
964
+ "loss": 214.566,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.53,
969
+ "learning_rate": 2e-05,
970
+ "loss": 289.3258,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.53,
975
+ "learning_rate": 2e-05,
976
+ "loss": 280.4387,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.54,
981
+ "learning_rate": 2e-05,
982
+ "loss": 308.4476,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.54,
987
+ "learning_rate": 2e-05,
988
+ "loss": 305.3412,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.54,
993
+ "learning_rate": 2e-05,
994
+ "loss": 316.1368,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.55,
999
+ "learning_rate": 2e-05,
1000
+ "loss": 314.1208,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.55,
1005
+ "learning_rate": 2e-05,
1006
+ "loss": 413.5666,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.55,
1011
+ "learning_rate": 2e-05,
1012
+ "loss": 272.8596,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.56,
1017
+ "learning_rate": 2e-05,
1018
+ "loss": 307.2043,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.56,
1023
+ "learning_rate": 2e-05,
1024
+ "loss": 318.3997,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.56,
1029
+ "learning_rate": 2e-05,
1030
+ "loss": 328.7892,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.57,
1035
+ "learning_rate": 2e-05,
1036
+ "loss": 322.48,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.57,
1041
+ "learning_rate": 2e-05,
1042
+ "loss": 296.6621,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.57,
1047
+ "learning_rate": 2e-05,
1048
+ "loss": 316.1772,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.58,
1053
+ "learning_rate": 2e-05,
1054
+ "loss": 240.0376,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.58,
1059
+ "learning_rate": 2e-05,
1060
+ "loss": 295.6813,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.58,
1065
+ "learning_rate": 2e-05,
1066
+ "loss": 318.4695,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.59,
1071
+ "learning_rate": 2e-05,
1072
+ "loss": 307.9428,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.59,
1077
+ "learning_rate": 2e-05,
1078
+ "loss": 265.1976,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.59,
1083
+ "learning_rate": 2e-05,
1084
+ "loss": 327.1461,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.6,
1089
+ "learning_rate": 2e-05,
1090
+ "loss": 288.329,
1091
+ "step": 179
1092
+ },
1093
+ {
1094
+ "epoch": 0.6,
1095
+ "learning_rate": 2e-05,
1096
+ "loss": 285.4697,
1097
+ "step": 180
1098
+ },
1099
+ {
1100
+ "epoch": 0.6,
1101
+ "learning_rate": 2e-05,
1102
+ "loss": 263.3636,
1103
+ "step": 181
1104
+ },
1105
+ {
1106
+ "epoch": 0.61,
1107
+ "learning_rate": 2e-05,
1108
+ "loss": 266.7616,
1109
+ "step": 182
1110
+ },
1111
+ {
1112
+ "epoch": 0.61,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 278.2103,
1115
+ "step": 183
1116
+ },
1117
+ {
1118
+ "epoch": 0.61,
1119
+ "learning_rate": 2e-05,
1120
+ "loss": 262.6075,
1121
+ "step": 184
1122
+ },
1123
+ {
1124
+ "epoch": 0.62,
1125
+ "learning_rate": 2e-05,
1126
+ "loss": 301.3991,
1127
+ "step": 185
1128
+ },
1129
+ {
1130
+ "epoch": 0.62,
1131
+ "learning_rate": 2e-05,
1132
+ "loss": 232.6239,
1133
+ "step": 186
1134
+ },
1135
+ {
1136
+ "epoch": 0.62,
1137
+ "learning_rate": 2e-05,
1138
+ "loss": 297.678,
1139
+ "step": 187
1140
+ },
1141
+ {
1142
+ "epoch": 0.63,
1143
+ "learning_rate": 2e-05,
1144
+ "loss": 221.4155,
1145
+ "step": 188
1146
+ },
1147
+ {
1148
+ "epoch": 0.63,
1149
+ "learning_rate": 2e-05,
1150
+ "loss": 322.8382,
1151
+ "step": 189
1152
+ },
1153
+ {
1154
+ "epoch": 0.63,
1155
+ "learning_rate": 2e-05,
1156
+ "loss": 291.5475,
1157
+ "step": 190
1158
+ },
1159
+ {
1160
+ "epoch": 0.64,
1161
+ "learning_rate": 2e-05,
1162
+ "loss": 243.8622,
1163
+ "step": 191
1164
+ },
1165
+ {
1166
+ "epoch": 0.64,
1167
+ "learning_rate": 2e-05,
1168
+ "loss": 303.3617,
1169
+ "step": 192
1170
+ },
1171
+ {
1172
+ "epoch": 0.64,
1173
+ "learning_rate": 2e-05,
1174
+ "loss": 240.6237,
1175
+ "step": 193
1176
+ },
1177
+ {
1178
+ "epoch": 0.65,
1179
+ "learning_rate": 2e-05,
1180
+ "loss": 224.548,
1181
+ "step": 194
1182
+ },
1183
+ {
1184
+ "epoch": 0.65,
1185
+ "learning_rate": 2e-05,
1186
+ "loss": 260.3085,
1187
+ "step": 195
1188
+ },
1189
+ {
1190
+ "epoch": 0.65,
1191
+ "learning_rate": 2e-05,
1192
+ "loss": 247.1713,
1193
+ "step": 196
1194
+ },
1195
+ {
1196
+ "epoch": 0.66,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 236.0542,
1199
+ "step": 197
1200
+ },
1201
+ {
1202
+ "epoch": 0.66,
1203
+ "learning_rate": 2e-05,
1204
+ "loss": 254.8948,
1205
+ "step": 198
1206
+ },
1207
+ {
1208
+ "epoch": 0.66,
1209
+ "learning_rate": 2e-05,
1210
+ "loss": 230.9995,
1211
+ "step": 199
1212
+ },
1213
+ {
1214
+ "epoch": 0.67,
1215
+ "learning_rate": 2e-05,
1216
+ "loss": 275.4061,
1217
+ "step": 200
1218
+ },
1219
+ {
1220
+ "epoch": 0.67,
1221
+ "learning_rate": 2e-05,
1222
+ "loss": 280.2545,
1223
+ "step": 201
1224
+ },
1225
+ {
1226
+ "epoch": 0.67,
1227
+ "learning_rate": 2e-05,
1228
+ "loss": 321.3388,
1229
+ "step": 202
1230
+ },
1231
+ {
1232
+ "epoch": 0.68,
1233
+ "learning_rate": 2e-05,
1234
+ "loss": 271.4129,
1235
+ "step": 203
1236
+ },
1237
+ {
1238
+ "epoch": 0.68,
1239
+ "learning_rate": 2e-05,
1240
+ "loss": 246.0401,
1241
+ "step": 204
1242
+ },
1243
+ {
1244
+ "epoch": 0.68,
1245
+ "learning_rate": 2e-05,
1246
+ "loss": 258.4705,
1247
+ "step": 205
1248
+ },
1249
+ {
1250
+ "epoch": 0.69,
1251
+ "learning_rate": 2e-05,
1252
+ "loss": 310.4536,
1253
+ "step": 206
1254
+ },
1255
+ {
1256
+ "epoch": 0.69,
1257
+ "learning_rate": 2e-05,
1258
+ "loss": 259.5285,
1259
+ "step": 207
1260
+ },
1261
+ {
1262
+ "epoch": 0.69,
1263
+ "learning_rate": 2e-05,
1264
+ "loss": 237.5303,
1265
+ "step": 208
1266
+ },
1267
+ {
1268
+ "epoch": 0.7,
1269
+ "learning_rate": 2e-05,
1270
+ "loss": 278.5979,
1271
+ "step": 209
1272
+ },
1273
+ {
1274
+ "epoch": 0.7,
1275
+ "learning_rate": 2e-05,
1276
+ "loss": 285.5738,
1277
+ "step": 210
1278
+ },
1279
+ {
1280
+ "epoch": 0.7,
1281
+ "learning_rate": 2e-05,
1282
+ "loss": 271.1486,
1283
+ "step": 211
1284
+ },
1285
+ {
1286
+ "epoch": 0.71,
1287
+ "learning_rate": 2e-05,
1288
+ "loss": 247.188,
1289
+ "step": 212
1290
+ },
1291
+ {
1292
+ "epoch": 0.71,
1293
+ "learning_rate": 2e-05,
1294
+ "loss": 234.2194,
1295
+ "step": 213
1296
+ },
1297
+ {
1298
+ "epoch": 0.71,
1299
+ "learning_rate": 2e-05,
1300
+ "loss": 301.1833,
1301
+ "step": 214
1302
+ },
1303
+ {
1304
+ "epoch": 0.72,
1305
+ "learning_rate": 2e-05,
1306
+ "loss": 267.9955,
1307
+ "step": 215
1308
+ },
1309
+ {
1310
+ "epoch": 0.72,
1311
+ "learning_rate": 2e-05,
1312
+ "loss": 288.0046,
1313
+ "step": 216
1314
+ },
1315
+ {
1316
+ "epoch": 0.72,
1317
+ "learning_rate": 2e-05,
1318
+ "loss": 263.2744,
1319
+ "step": 217
1320
+ },
1321
+ {
1322
+ "epoch": 0.73,
1323
+ "learning_rate": 2e-05,
1324
+ "loss": 236.09,
1325
+ "step": 218
1326
+ },
1327
+ {
1328
+ "epoch": 0.73,
1329
+ "learning_rate": 2e-05,
1330
+ "loss": 273.5681,
1331
+ "step": 219
1332
+ },
1333
+ {
1334
+ "epoch": 0.73,
1335
+ "learning_rate": 2e-05,
1336
+ "loss": 314.3279,
1337
+ "step": 220
1338
+ },
1339
+ {
1340
+ "epoch": 0.74,
1341
+ "learning_rate": 2e-05,
1342
+ "loss": 240.7439,
1343
+ "step": 221
1344
+ },
1345
+ {
1346
+ "epoch": 0.74,
1347
+ "learning_rate": 2e-05,
1348
+ "loss": 275.4979,
1349
+ "step": 222
1350
+ },
1351
+ {
1352
+ "epoch": 0.74,
1353
+ "learning_rate": 2e-05,
1354
+ "loss": 240.7771,
1355
+ "step": 223
1356
+ },
1357
+ {
1358
+ "epoch": 0.75,
1359
+ "learning_rate": 2e-05,
1360
+ "loss": 260.4418,
1361
+ "step": 224
1362
+ },
1363
+ {
1364
+ "epoch": 0.75,
1365
+ "learning_rate": 2e-05,
1366
+ "loss": 234.2265,
1367
+ "step": 225
1368
+ },
1369
+ {
1370
+ "epoch": 0.75,
1371
+ "learning_rate": 2e-05,
1372
+ "loss": 270.6098,
1373
+ "step": 226
1374
+ },
1375
+ {
1376
+ "epoch": 0.76,
1377
+ "learning_rate": 2e-05,
1378
+ "loss": 229.4481,
1379
+ "step": 227
1380
+ },
1381
+ {
1382
+ "epoch": 0.76,
1383
+ "learning_rate": 2e-05,
1384
+ "loss": 306.5601,
1385
+ "step": 228
1386
+ },
1387
+ {
1388
+ "epoch": 0.76,
1389
+ "learning_rate": 2e-05,
1390
+ "loss": 232.1583,
1391
+ "step": 229
1392
+ },
1393
+ {
1394
+ "epoch": 0.77,
1395
+ "learning_rate": 2e-05,
1396
+ "loss": 236.2021,
1397
+ "step": 230
1398
+ },
1399
+ {
1400
+ "epoch": 0.77,
1401
+ "learning_rate": 2e-05,
1402
+ "loss": 261.0574,
1403
+ "step": 231
1404
+ },
1405
+ {
1406
+ "epoch": 0.77,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 264.9504,
1409
+ "step": 232
1410
+ },
1411
+ {
1412
+ "epoch": 0.78,
1413
+ "learning_rate": 2e-05,
1414
+ "loss": 235.4366,
1415
+ "step": 233
1416
+ },
1417
+ {
1418
+ "epoch": 0.78,
1419
+ "learning_rate": 2e-05,
1420
+ "loss": 264.1496,
1421
+ "step": 234
1422
+ },
1423
+ {
1424
+ "epoch": 0.78,
1425
+ "learning_rate": 2e-05,
1426
+ "loss": 242.2036,
1427
+ "step": 235
1428
+ },
1429
+ {
1430
+ "epoch": 0.79,
1431
+ "learning_rate": 2e-05,
1432
+ "loss": 353.3135,
1433
+ "step": 236
1434
+ },
1435
+ {
1436
+ "epoch": 0.79,
1437
+ "learning_rate": 2e-05,
1438
+ "loss": 210.8655,
1439
+ "step": 237
1440
+ },
1441
+ {
1442
+ "epoch": 0.79,
1443
+ "learning_rate": 2e-05,
1444
+ "loss": 303.5106,
1445
+ "step": 238
1446
+ },
1447
+ {
1448
+ "epoch": 0.8,
1449
+ "learning_rate": 2e-05,
1450
+ "loss": 284.8805,
1451
+ "step": 239
1452
+ },
1453
+ {
1454
+ "epoch": 0.8,
1455
+ "learning_rate": 2e-05,
1456
+ "loss": 297.9016,
1457
+ "step": 240
1458
+ },
1459
+ {
1460
+ "epoch": 0.8,
1461
+ "learning_rate": 2e-05,
1462
+ "loss": 282.7299,
1463
+ "step": 241
1464
+ },
1465
+ {
1466
+ "epoch": 0.81,
1467
+ "learning_rate": 2e-05,
1468
+ "loss": 248.2567,
1469
+ "step": 242
1470
+ },
1471
+ {
1472
+ "epoch": 0.81,
1473
+ "learning_rate": 2e-05,
1474
+ "loss": 272.2921,
1475
+ "step": 243
1476
+ },
1477
+ {
1478
+ "epoch": 0.81,
1479
+ "learning_rate": 2e-05,
1480
+ "loss": 239.2713,
1481
+ "step": 244
1482
+ },
1483
+ {
1484
+ "epoch": 0.82,
1485
+ "learning_rate": 2e-05,
1486
+ "loss": 266.6125,
1487
+ "step": 245
1488
+ },
1489
+ {
1490
+ "epoch": 0.82,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 255.2529,
1493
+ "step": 246
1494
+ },
1495
+ {
1496
+ "epoch": 0.82,
1497
+ "learning_rate": 2e-05,
1498
+ "loss": 301.0817,
1499
+ "step": 247
1500
+ },
1501
+ {
1502
+ "epoch": 0.83,
1503
+ "learning_rate": 2e-05,
1504
+ "loss": 289.9151,
1505
+ "step": 248
1506
+ },
1507
+ {
1508
+ "epoch": 0.83,
1509
+ "learning_rate": 2e-05,
1510
+ "loss": 269.2121,
1511
+ "step": 249
1512
+ },
1513
+ {
1514
+ "epoch": 0.83,
1515
+ "learning_rate": 2e-05,
1516
+ "loss": 255.5247,
1517
+ "step": 250
1518
+ },
1519
+ {
1520
+ "epoch": 0.84,
1521
+ "learning_rate": 2e-05,
1522
+ "loss": 247.6964,
1523
+ "step": 251
1524
+ },
1525
+ {
1526
+ "epoch": 0.84,
1527
+ "learning_rate": 2e-05,
1528
+ "loss": 217.559,
1529
+ "step": 252
1530
+ },
1531
+ {
1532
+ "epoch": 0.84,
1533
+ "learning_rate": 2e-05,
1534
+ "loss": 230.6058,
1535
+ "step": 253
1536
+ },
1537
+ {
1538
+ "epoch": 0.85,
1539
+ "learning_rate": 2e-05,
1540
+ "loss": 214.143,
1541
+ "step": 254
1542
+ },
1543
+ {
1544
+ "epoch": 0.85,
1545
+ "learning_rate": 2e-05,
1546
+ "loss": 284.8932,
1547
+ "step": 255
1548
+ },
1549
+ {
1550
+ "epoch": 0.85,
1551
+ "learning_rate": 2e-05,
1552
+ "loss": 235.6913,
1553
+ "step": 256
1554
+ },
1555
+ {
1556
+ "epoch": 0.86,
1557
+ "learning_rate": 2e-05,
1558
+ "loss": 284.4674,
1559
+ "step": 257
1560
+ },
1561
+ {
1562
+ "epoch": 0.86,
1563
+ "learning_rate": 2e-05,
1564
+ "loss": 288.0122,
1565
+ "step": 258
1566
+ },
1567
+ {
1568
+ "epoch": 0.86,
1569
+ "learning_rate": 2e-05,
1570
+ "loss": 248.2686,
1571
+ "step": 259
1572
+ },
1573
+ {
1574
+ "epoch": 0.87,
1575
+ "learning_rate": 2e-05,
1576
+ "loss": 279.7363,
1577
+ "step": 260
1578
+ },
1579
+ {
1580
+ "epoch": 0.87,
1581
+ "learning_rate": 2e-05,
1582
+ "loss": 308.7455,
1583
+ "step": 261
1584
+ },
1585
+ {
1586
+ "epoch": 0.87,
1587
+ "learning_rate": 2e-05,
1588
+ "loss": 277.4221,
1589
+ "step": 262
1590
+ },
1591
+ {
1592
+ "epoch": 0.88,
1593
+ "learning_rate": 2e-05,
1594
+ "loss": 254.3973,
1595
+ "step": 263
1596
+ },
1597
+ {
1598
+ "epoch": 0.88,
1599
+ "learning_rate": 2e-05,
1600
+ "loss": 254.7358,
1601
+ "step": 264
1602
+ },
1603
+ {
1604
+ "epoch": 0.88,
1605
+ "learning_rate": 2e-05,
1606
+ "loss": 233.0448,
1607
+ "step": 265
1608
+ },
1609
+ {
1610
+ "epoch": 0.89,
1611
+ "learning_rate": 2e-05,
1612
+ "loss": 235.5645,
1613
+ "step": 266
1614
+ },
1615
+ {
1616
+ "epoch": 0.89,
1617
+ "learning_rate": 2e-05,
1618
+ "loss": 295.3665,
1619
+ "step": 267
1620
+ },
1621
+ {
1622
+ "epoch": 0.89,
1623
+ "learning_rate": 2e-05,
1624
+ "loss": 270.3642,
1625
+ "step": 268
1626
+ },
1627
+ {
1628
+ "epoch": 0.9,
1629
+ "learning_rate": 2e-05,
1630
+ "loss": 279.1059,
1631
+ "step": 269
1632
+ },
1633
+ {
1634
+ "epoch": 0.9,
1635
+ "learning_rate": 2e-05,
1636
+ "loss": 222.4796,
1637
+ "step": 270
1638
+ },
1639
+ {
1640
+ "epoch": 0.9,
1641
+ "learning_rate": 2e-05,
1642
+ "loss": 227.0107,
1643
+ "step": 271
1644
+ },
1645
+ {
1646
+ "epoch": 0.91,
1647
+ "learning_rate": 2e-05,
1648
+ "loss": 244.201,
1649
+ "step": 272
1650
+ },
1651
+ {
1652
+ "epoch": 0.91,
1653
+ "learning_rate": 2e-05,
1654
+ "loss": 248.5634,
1655
+ "step": 273
1656
+ },
1657
+ {
1658
+ "epoch": 0.91,
1659
+ "learning_rate": 2e-05,
1660
+ "loss": 277.4857,
1661
+ "step": 274
1662
+ },
1663
+ {
1664
+ "epoch": 0.92,
1665
+ "learning_rate": 2e-05,
1666
+ "loss": 255.8076,
1667
+ "step": 275
1668
+ },
1669
+ {
1670
+ "epoch": 0.92,
1671
+ "learning_rate": 2e-05,
1672
+ "loss": 241.0695,
1673
+ "step": 276
1674
+ },
1675
+ {
1676
+ "epoch": 0.92,
1677
+ "learning_rate": 2e-05,
1678
+ "loss": 286.1827,
1679
+ "step": 277
1680
+ },
1681
+ {
1682
+ "epoch": 0.93,
1683
+ "learning_rate": 2e-05,
1684
+ "loss": 261.8386,
1685
+ "step": 278
1686
+ },
1687
+ {
1688
+ "epoch": 0.93,
1689
+ "learning_rate": 2e-05,
1690
+ "loss": 330.9406,
1691
+ "step": 279
1692
+ },
1693
+ {
1694
+ "epoch": 0.93,
1695
+ "learning_rate": 2e-05,
1696
+ "loss": 221.898,
1697
+ "step": 280
1698
+ },
1699
+ {
1700
+ "epoch": 0.94,
1701
+ "learning_rate": 2e-05,
1702
+ "loss": 223.2677,
1703
+ "step": 281
1704
+ },
1705
+ {
1706
+ "epoch": 0.94,
1707
+ "learning_rate": 2e-05,
1708
+ "loss": 236.0616,
1709
+ "step": 282
1710
+ },
1711
+ {
1712
+ "epoch": 0.94,
1713
+ "learning_rate": 2e-05,
1714
+ "loss": 218.6026,
1715
+ "step": 283
1716
+ },
1717
+ {
1718
+ "epoch": 0.95,
1719
+ "learning_rate": 2e-05,
1720
+ "loss": 273.3364,
1721
+ "step": 284
1722
+ },
1723
+ {
1724
+ "epoch": 0.95,
1725
+ "learning_rate": 2e-05,
1726
+ "loss": 278.8625,
1727
+ "step": 285
1728
+ },
1729
+ {
1730
+ "epoch": 0.95,
1731
+ "learning_rate": 2e-05,
1732
+ "loss": 224.1773,
1733
+ "step": 286
1734
+ },
1735
+ {
1736
+ "epoch": 0.96,
1737
+ "learning_rate": 2e-05,
1738
+ "loss": 264.6806,
1739
+ "step": 287
1740
+ },
1741
+ {
1742
+ "epoch": 0.96,
1743
+ "learning_rate": 2e-05,
1744
+ "loss": 245.4145,
1745
+ "step": 288
1746
+ },
1747
+ {
1748
+ "epoch": 0.96,
1749
+ "learning_rate": 2e-05,
1750
+ "loss": 207.8361,
1751
+ "step": 289
1752
+ },
1753
+ {
1754
+ "epoch": 0.97,
1755
+ "learning_rate": 2e-05,
1756
+ "loss": 290.9304,
1757
+ "step": 290
1758
+ },
1759
+ {
1760
+ "epoch": 0.97,
1761
+ "learning_rate": 2e-05,
1762
+ "loss": 221.5088,
1763
+ "step": 291
1764
+ },
1765
+ {
1766
+ "epoch": 0.97,
1767
+ "learning_rate": 2e-05,
1768
+ "loss": 224.0763,
1769
+ "step": 292
1770
+ },
1771
+ {
1772
+ "epoch": 0.98,
1773
+ "learning_rate": 2e-05,
1774
+ "loss": 249.4179,
1775
+ "step": 293
1776
+ },
1777
+ {
1778
+ "epoch": 0.98,
1779
+ "learning_rate": 2e-05,
1780
+ "loss": 236.3529,
1781
+ "step": 294
1782
+ },
1783
+ {
1784
+ "epoch": 0.98,
1785
+ "learning_rate": 2e-05,
1786
+ "loss": 259.7051,
1787
+ "step": 295
1788
+ },
1789
+ {
1790
+ "epoch": 0.99,
1791
+ "learning_rate": 2e-05,
1792
+ "loss": 337.4284,
1793
+ "step": 296
1794
+ },
1795
+ {
1796
+ "epoch": 0.99,
1797
+ "learning_rate": 2e-05,
1798
+ "loss": 282.2198,
1799
+ "step": 297
1800
+ },
1801
+ {
1802
+ "epoch": 0.99,
1803
+ "learning_rate": 2e-05,
1804
+ "loss": 206.7412,
1805
+ "step": 298
1806
+ },
1807
+ {
1808
+ "epoch": 1.0,
1809
+ "learning_rate": 2e-05,
1810
+ "loss": 270.6522,
1811
+ "step": 299
1812
+ },
1813
+ {
1814
+ "epoch": 1.0,
1815
+ "learning_rate": 2e-05,
1816
+ "loss": 251.5347,
1817
+ "step": 300
1818
+ },
1819
+ {
1820
+ "epoch": 1.0,
1821
+ "eval_loss": 247.680419921875,
1822
+ "eval_runtime": 287.8885,
1823
+ "eval_samples_per_second": 16.673,
1824
+ "eval_steps_per_second": 1.042,
1825
+ "step": 300
1826
+ },
1827
+ {
1828
+ "epoch": 1.0,
1829
+ "learning_rate": 2e-05,
1830
+ "loss": 245.9543,
1831
+ "step": 301
1832
+ },
1833
+ {
1834
+ "epoch": 1.01,
1835
+ "learning_rate": 2e-05,
1836
+ "loss": 215.307,
1837
+ "step": 302
1838
+ },
1839
+ {
1840
+ "epoch": 1.01,
1841
+ "learning_rate": 2e-05,
1842
+ "loss": 232.8804,
1843
+ "step": 303
1844
+ },
1845
+ {
1846
+ "epoch": 1.01,
1847
+ "learning_rate": 2e-05,
1848
+ "loss": 270.2068,
1849
+ "step": 304
1850
+ },
1851
+ {
1852
+ "epoch": 1.02,
1853
+ "learning_rate": 2e-05,
1854
+ "loss": 210.0473,
1855
+ "step": 305
1856
+ },
1857
+ {
1858
+ "epoch": 1.02,
1859
+ "learning_rate": 2e-05,
1860
+ "loss": 219.887,
1861
+ "step": 306
1862
+ },
1863
+ {
1864
+ "epoch": 1.02,
1865
+ "learning_rate": 2e-05,
1866
+ "loss": 234.6451,
1867
+ "step": 307
1868
+ },
1869
+ {
1870
+ "epoch": 1.03,
1871
+ "learning_rate": 2e-05,
1872
+ "loss": 241.5837,
1873
+ "step": 308
1874
+ },
1875
+ {
1876
+ "epoch": 1.03,
1877
+ "learning_rate": 2e-05,
1878
+ "loss": 236.1227,
1879
+ "step": 309
1880
+ },
1881
+ {
1882
+ "epoch": 1.03,
1883
+ "learning_rate": 2e-05,
1884
+ "loss": 211.8941,
1885
+ "step": 310
1886
+ },
1887
+ {
1888
+ "epoch": 1.04,
1889
+ "learning_rate": 2e-05,
1890
+ "loss": 204.086,
1891
+ "step": 311
1892
+ },
1893
+ {
1894
+ "epoch": 1.04,
1895
+ "learning_rate": 2e-05,
1896
+ "loss": 353.9028,
1897
+ "step": 312
1898
+ },
1899
+ {
1900
+ "epoch": 1.04,
1901
+ "learning_rate": 2e-05,
1902
+ "loss": 297.9178,
1903
+ "step": 313
1904
+ },
1905
+ {
1906
+ "epoch": 1.05,
1907
+ "learning_rate": 2e-05,
1908
+ "loss": 219.1808,
1909
+ "step": 314
1910
+ },
1911
+ {
1912
+ "epoch": 1.05,
1913
+ "learning_rate": 2e-05,
1914
+ "loss": 212.635,
1915
+ "step": 315
1916
+ },
1917
+ {
1918
+ "epoch": 1.05,
1919
+ "learning_rate": 2e-05,
1920
+ "loss": 216.6892,
1921
+ "step": 316
1922
+ },
1923
+ {
1924
+ "epoch": 1.06,
1925
+ "learning_rate": 2e-05,
1926
+ "loss": 336.1581,
1927
+ "step": 317
1928
+ },
1929
+ {
1930
+ "epoch": 1.06,
1931
+ "learning_rate": 2e-05,
1932
+ "loss": 178.8046,
1933
+ "step": 318
1934
+ },
1935
+ {
1936
+ "epoch": 1.06,
1937
+ "learning_rate": 2e-05,
1938
+ "loss": 249.9513,
1939
+ "step": 319
1940
+ },
1941
+ {
1942
+ "epoch": 1.07,
1943
+ "learning_rate": 2e-05,
1944
+ "loss": 258.9301,
1945
+ "step": 320
1946
+ },
1947
+ {
1948
+ "epoch": 1.07,
1949
+ "learning_rate": 2e-05,
1950
+ "loss": 308.1837,
1951
+ "step": 321
1952
+ },
1953
+ {
1954
+ "epoch": 1.07,
1955
+ "learning_rate": 2e-05,
1956
+ "loss": 214.1725,
1957
+ "step": 322
1958
+ },
1959
+ {
1960
+ "epoch": 1.08,
1961
+ "learning_rate": 2e-05,
1962
+ "loss": 218.7718,
1963
+ "step": 323
1964
+ },
1965
+ {
1966
+ "epoch": 1.08,
1967
+ "learning_rate": 2e-05,
1968
+ "loss": 343.1404,
1969
+ "step": 324
1970
+ },
1971
+ {
1972
+ "epoch": 1.08,
1973
+ "learning_rate": 2e-05,
1974
+ "loss": 200.2678,
1975
+ "step": 325
1976
+ },
1977
+ {
1978
+ "epoch": 1.09,
1979
+ "learning_rate": 2e-05,
1980
+ "loss": 321.7372,
1981
+ "step": 326
1982
+ },
1983
+ {
1984
+ "epoch": 1.09,
1985
+ "learning_rate": 2e-05,
1986
+ "loss": 264.7751,
1987
+ "step": 327
1988
+ },
1989
+ {
1990
+ "epoch": 1.09,
1991
+ "learning_rate": 2e-05,
1992
+ "loss": 224.7439,
1993
+ "step": 328
1994
+ },
1995
+ {
1996
+ "epoch": 1.1,
1997
+ "learning_rate": 2e-05,
1998
+ "loss": 196.1887,
1999
+ "step": 329
2000
+ },
2001
+ {
2002
+ "epoch": 1.1,
2003
+ "learning_rate": 2e-05,
2004
+ "loss": 234.8271,
2005
+ "step": 330
2006
+ },
2007
+ {
2008
+ "epoch": 1.1,
2009
+ "learning_rate": 2e-05,
2010
+ "loss": 220.26,
2011
+ "step": 331
2012
+ },
2013
+ {
2014
+ "epoch": 1.11,
2015
+ "learning_rate": 2e-05,
2016
+ "loss": 213.665,
2017
+ "step": 332
2018
+ },
2019
+ {
2020
+ "epoch": 1.11,
2021
+ "learning_rate": 2e-05,
2022
+ "loss": 232.8795,
2023
+ "step": 333
2024
+ },
2025
+ {
2026
+ "epoch": 1.11,
2027
+ "learning_rate": 2e-05,
2028
+ "loss": 214.4828,
2029
+ "step": 334
2030
+ },
2031
+ {
2032
+ "epoch": 1.12,
2033
+ "learning_rate": 2e-05,
2034
+ "loss": 198.4257,
2035
+ "step": 335
2036
+ },
2037
+ {
2038
+ "epoch": 1.12,
2039
+ "learning_rate": 2e-05,
2040
+ "loss": 246.1346,
2041
+ "step": 336
2042
+ },
2043
+ {
2044
+ "epoch": 1.12,
2045
+ "learning_rate": 2e-05,
2046
+ "loss": 223.7612,
2047
+ "step": 337
2048
+ },
2049
+ {
2050
+ "epoch": 1.13,
2051
+ "learning_rate": 2e-05,
2052
+ "loss": 303.2517,
2053
+ "step": 338
2054
+ },
2055
+ {
2056
+ "epoch": 1.13,
2057
+ "learning_rate": 2e-05,
2058
+ "loss": 240.5897,
2059
+ "step": 339
2060
+ },
2061
+ {
2062
+ "epoch": 1.13,
2063
+ "learning_rate": 2e-05,
2064
+ "loss": 206.087,
2065
+ "step": 340
2066
+ },
2067
+ {
2068
+ "epoch": 1.14,
2069
+ "learning_rate": 2e-05,
2070
+ "loss": 238.7818,
2071
+ "step": 341
2072
+ },
2073
+ {
2074
+ "epoch": 1.14,
2075
+ "learning_rate": 2e-05,
2076
+ "loss": 225.7912,
2077
+ "step": 342
2078
+ },
2079
+ {
2080
+ "epoch": 1.14,
2081
+ "learning_rate": 2e-05,
2082
+ "loss": 229.2215,
2083
+ "step": 343
2084
+ },
2085
+ {
2086
+ "epoch": 1.15,
2087
+ "learning_rate": 2e-05,
2088
+ "loss": 180.5617,
2089
+ "step": 344
2090
+ },
2091
+ {
2092
+ "epoch": 1.15,
2093
+ "learning_rate": 2e-05,
2094
+ "loss": 254.5206,
2095
+ "step": 345
2096
+ },
2097
+ {
2098
+ "epoch": 1.15,
2099
+ "learning_rate": 2e-05,
2100
+ "loss": 236.183,
2101
+ "step": 346
2102
+ },
2103
+ {
2104
+ "epoch": 1.16,
2105
+ "learning_rate": 2e-05,
2106
+ "loss": 235.8767,
2107
+ "step": 347
2108
+ },
2109
+ {
2110
+ "epoch": 1.16,
2111
+ "learning_rate": 2e-05,
2112
+ "loss": 223.3795,
2113
+ "step": 348
2114
+ },
2115
+ {
2116
+ "epoch": 1.16,
2117
+ "learning_rate": 2e-05,
2118
+ "loss": 236.039,
2119
+ "step": 349
2120
+ },
2121
+ {
2122
+ "epoch": 1.17,
2123
+ "learning_rate": 2e-05,
2124
+ "loss": 226.3709,
2125
+ "step": 350
2126
+ },
2127
+ {
2128
+ "epoch": 1.17,
2129
+ "learning_rate": 2e-05,
2130
+ "loss": 228.4313,
2131
+ "step": 351
2132
+ },
2133
+ {
2134
+ "epoch": 1.17,
2135
+ "learning_rate": 2e-05,
2136
+ "loss": 203.7726,
2137
+ "step": 352
2138
+ },
2139
+ {
2140
+ "epoch": 1.18,
2141
+ "learning_rate": 2e-05,
2142
+ "loss": 223.8938,
2143
+ "step": 353
2144
+ },
2145
+ {
2146
+ "epoch": 1.18,
2147
+ "learning_rate": 2e-05,
2148
+ "loss": 206.5053,
2149
+ "step": 354
2150
+ },
2151
+ {
2152
+ "epoch": 1.18,
2153
+ "learning_rate": 2e-05,
2154
+ "loss": 224.3272,
2155
+ "step": 355
2156
+ },
2157
+ {
2158
+ "epoch": 1.19,
2159
+ "learning_rate": 2e-05,
2160
+ "loss": 253.1774,
2161
+ "step": 356
2162
+ },
2163
+ {
2164
+ "epoch": 1.19,
2165
+ "learning_rate": 2e-05,
2166
+ "loss": 229.9487,
2167
+ "step": 357
2168
+ },
2169
+ {
2170
+ "epoch": 1.19,
2171
+ "learning_rate": 2e-05,
2172
+ "loss": 230.8462,
2173
+ "step": 358
2174
+ },
2175
+ {
2176
+ "epoch": 1.2,
2177
+ "learning_rate": 2e-05,
2178
+ "loss": 298.9388,
2179
+ "step": 359
2180
+ },
2181
+ {
2182
+ "epoch": 1.2,
2183
+ "learning_rate": 2e-05,
2184
+ "loss": 209.2686,
2185
+ "step": 360
2186
+ },
2187
+ {
2188
+ "epoch": 1.2,
2189
+ "learning_rate": 2e-05,
2190
+ "loss": 191.1316,
2191
+ "step": 361
2192
+ },
2193
+ {
2194
+ "epoch": 1.21,
2195
+ "learning_rate": 2e-05,
2196
+ "loss": 263.6025,
2197
+ "step": 362
2198
+ },
2199
+ {
2200
+ "epoch": 1.21,
2201
+ "learning_rate": 2e-05,
2202
+ "loss": 193.0966,
2203
+ "step": 363
2204
+ },
2205
+ {
2206
+ "epoch": 1.21,
2207
+ "learning_rate": 2e-05,
2208
+ "loss": 193.0884,
2209
+ "step": 364
2210
+ },
2211
+ {
2212
+ "epoch": 1.22,
2213
+ "learning_rate": 2e-05,
2214
+ "loss": 218.7641,
2215
+ "step": 365
2216
+ },
2217
+ {
2218
+ "epoch": 1.22,
2219
+ "learning_rate": 2e-05,
2220
+ "loss": 245.633,
2221
+ "step": 366
2222
+ },
2223
+ {
2224
+ "epoch": 1.22,
2225
+ "learning_rate": 2e-05,
2226
+ "loss": 177.7586,
2227
+ "step": 367
2228
+ },
2229
+ {
2230
+ "epoch": 1.23,
2231
+ "learning_rate": 2e-05,
2232
+ "loss": 189.6293,
2233
+ "step": 368
2234
+ },
2235
+ {
2236
+ "epoch": 1.23,
2237
+ "learning_rate": 2e-05,
2238
+ "loss": 188.3251,
2239
+ "step": 369
2240
+ },
2241
+ {
2242
+ "epoch": 1.23,
2243
+ "learning_rate": 2e-05,
2244
+ "loss": 211.644,
2245
+ "step": 370
2246
+ },
2247
+ {
2248
+ "epoch": 1.24,
2249
+ "learning_rate": 2e-05,
2250
+ "loss": 165.5959,
2251
+ "step": 371
2252
+ },
2253
+ {
2254
+ "epoch": 1.24,
2255
+ "learning_rate": 2e-05,
2256
+ "loss": 203.339,
2257
+ "step": 372
2258
+ },
2259
+ {
2260
+ "epoch": 1.24,
2261
+ "learning_rate": 2e-05,
2262
+ "loss": 207.5482,
2263
+ "step": 373
2264
+ },
2265
+ {
2266
+ "epoch": 1.25,
2267
+ "learning_rate": 2e-05,
2268
+ "loss": 236.129,
2269
+ "step": 374
2270
+ },
2271
+ {
2272
+ "epoch": 1.25,
2273
+ "learning_rate": 2e-05,
2274
+ "loss": 251.883,
2275
+ "step": 375
2276
+ },
2277
+ {
2278
+ "epoch": 1.25,
2279
+ "learning_rate": 2e-05,
2280
+ "loss": 214.6921,
2281
+ "step": 376
2282
+ },
2283
+ {
2284
+ "epoch": 1.26,
2285
+ "learning_rate": 2e-05,
2286
+ "loss": 249.8723,
2287
+ "step": 377
2288
+ },
2289
+ {
2290
+ "epoch": 1.26,
2291
+ "learning_rate": 2e-05,
2292
+ "loss": 234.278,
2293
+ "step": 378
2294
+ },
2295
+ {
2296
+ "epoch": 1.26,
2297
+ "learning_rate": 2e-05,
2298
+ "loss": 251.6463,
2299
+ "step": 379
2300
+ },
2301
+ {
2302
+ "epoch": 1.27,
2303
+ "learning_rate": 2e-05,
2304
+ "loss": 244.5367,
2305
+ "step": 380
2306
+ },
2307
+ {
2308
+ "epoch": 1.27,
2309
+ "learning_rate": 2e-05,
2310
+ "loss": 226.0958,
2311
+ "step": 381
2312
+ },
2313
+ {
2314
+ "epoch": 1.27,
2315
+ "learning_rate": 2e-05,
2316
+ "loss": 204.7845,
2317
+ "step": 382
2318
+ },
2319
+ {
2320
+ "epoch": 1.28,
2321
+ "learning_rate": 2e-05,
2322
+ "loss": 229.6162,
2323
+ "step": 383
2324
+ },
2325
+ {
2326
+ "epoch": 1.28,
2327
+ "learning_rate": 2e-05,
2328
+ "loss": 231.22,
2329
+ "step": 384
2330
+ },
2331
+ {
2332
+ "epoch": 1.28,
2333
+ "learning_rate": 2e-05,
2334
+ "loss": 207.0068,
2335
+ "step": 385
2336
+ },
2337
+ {
2338
+ "epoch": 1.29,
2339
+ "learning_rate": 2e-05,
2340
+ "loss": 245.944,
2341
+ "step": 386
2342
+ },
2343
+ {
2344
+ "epoch": 1.29,
2345
+ "learning_rate": 2e-05,
2346
+ "loss": 181.7492,
2347
+ "step": 387
2348
+ },
2349
+ {
2350
+ "epoch": 1.29,
2351
+ "learning_rate": 2e-05,
2352
+ "loss": 195.8122,
2353
+ "step": 388
2354
+ },
2355
+ {
2356
+ "epoch": 1.3,
2357
+ "learning_rate": 2e-05,
2358
+ "loss": 205.7455,
2359
+ "step": 389
2360
+ },
2361
+ {
2362
+ "epoch": 1.3,
2363
+ "learning_rate": 2e-05,
2364
+ "loss": 210.8664,
2365
+ "step": 390
2366
+ },
2367
+ {
2368
+ "epoch": 1.3,
2369
+ "learning_rate": 2e-05,
2370
+ "loss": 205.2473,
2371
+ "step": 391
2372
+ },
2373
+ {
2374
+ "epoch": 1.31,
2375
+ "learning_rate": 2e-05,
2376
+ "loss": 200.1387,
2377
+ "step": 392
2378
+ },
2379
+ {
2380
+ "epoch": 1.31,
2381
+ "learning_rate": 2e-05,
2382
+ "loss": 189.6015,
2383
+ "step": 393
2384
+ },
2385
+ {
2386
+ "epoch": 1.31,
2387
+ "learning_rate": 2e-05,
2388
+ "loss": 271.6579,
2389
+ "step": 394
2390
+ },
2391
+ {
2392
+ "epoch": 1.32,
2393
+ "learning_rate": 2e-05,
2394
+ "loss": 256.1616,
2395
+ "step": 395
2396
+ },
2397
+ {
2398
+ "epoch": 1.32,
2399
+ "learning_rate": 2e-05,
2400
+ "loss": 227.5033,
2401
+ "step": 396
2402
+ },
2403
+ {
2404
+ "epoch": 1.32,
2405
+ "learning_rate": 2e-05,
2406
+ "loss": 230.1321,
2407
+ "step": 397
2408
+ },
2409
+ {
2410
+ "epoch": 1.33,
2411
+ "learning_rate": 2e-05,
2412
+ "loss": 211.3426,
2413
+ "step": 398
2414
+ },
2415
+ {
2416
+ "epoch": 1.33,
2417
+ "learning_rate": 2e-05,
2418
+ "loss": 187.5162,
2419
+ "step": 399
2420
+ },
2421
+ {
2422
+ "epoch": 1.33,
2423
+ "learning_rate": 2e-05,
2424
+ "loss": 211.4105,
2425
+ "step": 400
2426
+ },
2427
+ {
2428
+ "epoch": 1.34,
2429
+ "learning_rate": 2e-05,
2430
+ "loss": 250.8305,
2431
+ "step": 401
2432
+ },
2433
+ {
2434
+ "epoch": 1.34,
2435
+ "learning_rate": 2e-05,
2436
+ "loss": 233.2176,
2437
+ "step": 402
2438
+ },
2439
+ {
2440
+ "epoch": 1.34,
2441
+ "learning_rate": 2e-05,
2442
+ "loss": 186.2552,
2443
+ "step": 403
2444
+ },
2445
+ {
2446
+ "epoch": 1.35,
2447
+ "learning_rate": 2e-05,
2448
+ "loss": 182.1218,
2449
+ "step": 404
2450
+ },
2451
+ {
2452
+ "epoch": 1.35,
2453
+ "learning_rate": 2e-05,
2454
+ "loss": 245.9604,
2455
+ "step": 405
2456
+ },
2457
+ {
2458
+ "epoch": 1.35,
2459
+ "learning_rate": 2e-05,
2460
+ "loss": 186.1751,
2461
+ "step": 406
2462
+ },
2463
+ {
2464
+ "epoch": 1.36,
2465
+ "learning_rate": 2e-05,
2466
+ "loss": 238.4419,
2467
+ "step": 407
2468
+ },
2469
+ {
2470
+ "epoch": 1.36,
2471
+ "learning_rate": 2e-05,
2472
+ "loss": 222.9325,
2473
+ "step": 408
2474
+ },
2475
+ {
2476
+ "epoch": 1.36,
2477
+ "learning_rate": 2e-05,
2478
+ "loss": 183.7545,
2479
+ "step": 409
2480
+ },
2481
+ {
2482
+ "epoch": 1.37,
2483
+ "learning_rate": 2e-05,
2484
+ "loss": 258.3376,
2485
+ "step": 410
2486
+ },
2487
+ {
2488
+ "epoch": 1.37,
2489
+ "learning_rate": 2e-05,
2490
+ "loss": 207.5193,
2491
+ "step": 411
2492
+ },
2493
+ {
2494
+ "epoch": 1.37,
2495
+ "learning_rate": 2e-05,
2496
+ "loss": 209.8826,
2497
+ "step": 412
2498
+ },
2499
+ {
2500
+ "epoch": 1.38,
2501
+ "learning_rate": 2e-05,
2502
+ "loss": 206.6928,
2503
+ "step": 413
2504
+ },
2505
+ {
2506
+ "epoch": 1.38,
2507
+ "learning_rate": 2e-05,
2508
+ "loss": 170.6046,
2509
+ "step": 414
2510
+ },
2511
+ {
2512
+ "epoch": 1.38,
2513
+ "learning_rate": 2e-05,
2514
+ "loss": 210.6746,
2515
+ "step": 415
2516
+ },
2517
+ {
2518
+ "epoch": 1.39,
2519
+ "learning_rate": 2e-05,
2520
+ "loss": 208.4622,
2521
+ "step": 416
2522
+ },
2523
+ {
2524
+ "epoch": 1.39,
2525
+ "learning_rate": 2e-05,
2526
+ "loss": 214.8073,
2527
+ "step": 417
2528
+ },
2529
+ {
2530
+ "epoch": 1.39,
2531
+ "learning_rate": 2e-05,
2532
+ "loss": 252.3761,
2533
+ "step": 418
2534
+ },
2535
+ {
2536
+ "epoch": 1.4,
2537
+ "learning_rate": 2e-05,
2538
+ "loss": 194.0715,
2539
+ "step": 419
2540
+ },
2541
+ {
2542
+ "epoch": 1.4,
2543
+ "learning_rate": 2e-05,
2544
+ "loss": 195.3139,
2545
+ "step": 420
2546
+ },
2547
+ {
2548
+ "epoch": 1.4,
2549
+ "learning_rate": 2e-05,
2550
+ "loss": 200.1256,
2551
+ "step": 421
2552
+ },
2553
+ {
2554
+ "epoch": 1.41,
2555
+ "learning_rate": 2e-05,
2556
+ "loss": 203.8806,
2557
+ "step": 422
2558
+ },
2559
+ {
2560
+ "epoch": 1.41,
2561
+ "learning_rate": 2e-05,
2562
+ "loss": 363.1582,
2563
+ "step": 423
2564
+ },
2565
+ {
2566
+ "epoch": 1.41,
2567
+ "learning_rate": 2e-05,
2568
+ "loss": 214.0313,
2569
+ "step": 424
2570
+ },
2571
+ {
2572
+ "epoch": 1.42,
2573
+ "learning_rate": 2e-05,
2574
+ "loss": 248.3994,
2575
+ "step": 425
2576
+ },
2577
+ {
2578
+ "epoch": 1.42,
2579
+ "learning_rate": 2e-05,
2580
+ "loss": 203.2281,
2581
+ "step": 426
2582
+ },
2583
+ {
2584
+ "epoch": 1.42,
2585
+ "learning_rate": 2e-05,
2586
+ "loss": 234.2976,
2587
+ "step": 427
2588
+ },
2589
+ {
2590
+ "epoch": 1.43,
2591
+ "learning_rate": 2e-05,
2592
+ "loss": 237.7386,
2593
+ "step": 428
2594
+ },
2595
+ {
2596
+ "epoch": 1.43,
2597
+ "learning_rate": 2e-05,
2598
+ "loss": 254.7703,
2599
+ "step": 429
2600
+ },
2601
+ {
2602
+ "epoch": 1.43,
2603
+ "learning_rate": 2e-05,
2604
+ "loss": 226.2335,
2605
+ "step": 430
2606
+ },
2607
+ {
2608
+ "epoch": 1.44,
2609
+ "learning_rate": 2e-05,
2610
+ "loss": 195.5936,
2611
+ "step": 431
2612
+ },
2613
+ {
2614
+ "epoch": 1.44,
2615
+ "learning_rate": 2e-05,
2616
+ "loss": 202.621,
2617
+ "step": 432
2618
+ },
2619
+ {
2620
+ "epoch": 1.44,
2621
+ "learning_rate": 2e-05,
2622
+ "loss": 224.2951,
2623
+ "step": 433
2624
+ },
2625
+ {
2626
+ "epoch": 1.45,
2627
+ "learning_rate": 2e-05,
2628
+ "loss": 211.6174,
2629
+ "step": 434
2630
+ },
2631
+ {
2632
+ "epoch": 1.45,
2633
+ "learning_rate": 2e-05,
2634
+ "loss": 215.9442,
2635
+ "step": 435
2636
+ },
2637
+ {
2638
+ "epoch": 1.45,
2639
+ "learning_rate": 2e-05,
2640
+ "loss": 191.8515,
2641
+ "step": 436
2642
+ },
2643
+ {
2644
+ "epoch": 1.46,
2645
+ "learning_rate": 2e-05,
2646
+ "loss": 202.5363,
2647
+ "step": 437
2648
+ },
2649
+ {
2650
+ "epoch": 1.46,
2651
+ "learning_rate": 2e-05,
2652
+ "loss": 244.0159,
2653
+ "step": 438
2654
+ },
2655
+ {
2656
+ "epoch": 1.46,
2657
+ "learning_rate": 2e-05,
2658
+ "loss": 254.0356,
2659
+ "step": 439
2660
+ },
2661
+ {
2662
+ "epoch": 1.47,
2663
+ "learning_rate": 2e-05,
2664
+ "loss": 267.0516,
2665
+ "step": 440
2666
+ },
2667
+ {
2668
+ "epoch": 1.47,
2669
+ "learning_rate": 2e-05,
2670
+ "loss": 199.8777,
2671
+ "step": 441
2672
+ },
2673
+ {
2674
+ "epoch": 1.47,
2675
+ "learning_rate": 2e-05,
2676
+ "loss": 208.3456,
2677
+ "step": 442
2678
+ },
2679
+ {
2680
+ "epoch": 1.48,
2681
+ "learning_rate": 2e-05,
2682
+ "loss": 238.818,
2683
+ "step": 443
2684
+ },
2685
+ {
2686
+ "epoch": 1.48,
2687
+ "learning_rate": 2e-05,
2688
+ "loss": 226.0656,
2689
+ "step": 444
2690
+ },
2691
+ {
2692
+ "epoch": 1.48,
2693
+ "learning_rate": 2e-05,
2694
+ "loss": 244.9799,
2695
+ "step": 445
2696
+ },
2697
+ {
2698
+ "epoch": 1.49,
2699
+ "learning_rate": 2e-05,
2700
+ "loss": 203.9123,
2701
+ "step": 446
2702
+ },
2703
+ {
2704
+ "epoch": 1.49,
2705
+ "learning_rate": 2e-05,
2706
+ "loss": 207.2839,
2707
+ "step": 447
2708
+ },
2709
+ {
2710
+ "epoch": 1.49,
2711
+ "learning_rate": 2e-05,
2712
+ "loss": 222.766,
2713
+ "step": 448
2714
+ },
2715
+ {
2716
+ "epoch": 1.5,
2717
+ "learning_rate": 2e-05,
2718
+ "loss": 252.938,
2719
+ "step": 449
2720
+ },
2721
+ {
2722
+ "epoch": 1.5,
2723
+ "learning_rate": 2e-05,
2724
+ "loss": 230.257,
2725
+ "step": 450
2726
+ },
2727
+ {
2728
+ "epoch": 1.5,
2729
+ "eval_loss": 226.50051879882812,
2730
+ "eval_runtime": 287.559,
2731
+ "eval_samples_per_second": 16.692,
2732
+ "eval_steps_per_second": 1.043,
2733
+ "step": 450
2734
+ },
2735
+ {
2736
+ "epoch": 1.5,
2737
+ "learning_rate": 2e-05,
2738
+ "loss": 249.9676,
2739
+ "step": 451
2740
+ },
2741
+ {
2742
+ "epoch": 1.51,
2743
+ "learning_rate": 2e-05,
2744
+ "loss": 291.7989,
2745
+ "step": 452
2746
+ },
2747
+ {
2748
+ "epoch": 1.51,
2749
+ "learning_rate": 2e-05,
2750
+ "loss": 244.1971,
2751
+ "step": 453
2752
+ },
2753
+ {
2754
+ "epoch": 1.51,
2755
+ "learning_rate": 2e-05,
2756
+ "loss": 210.1197,
2757
+ "step": 454
2758
+ },
2759
+ {
2760
+ "epoch": 1.52,
2761
+ "learning_rate": 2e-05,
2762
+ "loss": 185.1812,
2763
+ "step": 455
2764
+ },
2765
+ {
2766
+ "epoch": 1.52,
2767
+ "learning_rate": 2e-05,
2768
+ "loss": 203.96,
2769
+ "step": 456
2770
+ },
2771
+ {
2772
+ "epoch": 1.52,
2773
+ "learning_rate": 2e-05,
2774
+ "loss": 248.2275,
2775
+ "step": 457
2776
+ },
2777
+ {
2778
+ "epoch": 1.53,
2779
+ "learning_rate": 2e-05,
2780
+ "loss": 211.4718,
2781
+ "step": 458
2782
+ },
2783
+ {
2784
+ "epoch": 1.53,
2785
+ "learning_rate": 2e-05,
2786
+ "loss": 194.2697,
2787
+ "step": 459
2788
+ },
2789
+ {
2790
+ "epoch": 1.53,
2791
+ "learning_rate": 2e-05,
2792
+ "loss": 195.9454,
2793
+ "step": 460
2794
+ },
2795
+ {
2796
+ "epoch": 1.54,
2797
+ "learning_rate": 2e-05,
2798
+ "loss": 217.1035,
2799
+ "step": 461
2800
+ },
2801
+ {
2802
+ "epoch": 1.54,
2803
+ "learning_rate": 2e-05,
2804
+ "loss": 224.5334,
2805
+ "step": 462
2806
+ },
2807
+ {
2808
+ "epoch": 1.54,
2809
+ "learning_rate": 2e-05,
2810
+ "loss": 199.3744,
2811
+ "step": 463
2812
+ },
2813
+ {
2814
+ "epoch": 1.55,
2815
+ "learning_rate": 2e-05,
2816
+ "loss": 204.6962,
2817
+ "step": 464
2818
+ },
2819
+ {
2820
+ "epoch": 1.55,
2821
+ "learning_rate": 2e-05,
2822
+ "loss": 171.7811,
2823
+ "step": 465
2824
+ },
2825
+ {
2826
+ "epoch": 1.55,
2827
+ "learning_rate": 2e-05,
2828
+ "loss": 244.8348,
2829
+ "step": 466
2830
+ },
2831
+ {
2832
+ "epoch": 1.56,
2833
+ "learning_rate": 2e-05,
2834
+ "loss": 187.4453,
2835
+ "step": 467
2836
+ },
2837
+ {
2838
+ "epoch": 1.56,
2839
+ "learning_rate": 2e-05,
2840
+ "loss": 225.2651,
2841
+ "step": 468
2842
+ },
2843
+ {
2844
+ "epoch": 1.56,
2845
+ "learning_rate": 2e-05,
2846
+ "loss": 202.3235,
2847
+ "step": 469
2848
+ },
2849
+ {
2850
+ "epoch": 1.57,
2851
+ "learning_rate": 2e-05,
2852
+ "loss": 267.9012,
2853
+ "step": 470
2854
+ },
2855
+ {
2856
+ "epoch": 1.57,
2857
+ "learning_rate": 2e-05,
2858
+ "loss": 192.601,
2859
+ "step": 471
2860
+ },
2861
+ {
2862
+ "epoch": 1.57,
2863
+ "learning_rate": 2e-05,
2864
+ "loss": 215.3246,
2865
+ "step": 472
2866
+ },
2867
+ {
2868
+ "epoch": 1.58,
2869
+ "learning_rate": 2e-05,
2870
+ "loss": 206.6324,
2871
+ "step": 473
2872
+ },
2873
+ {
2874
+ "epoch": 1.58,
2875
+ "learning_rate": 2e-05,
2876
+ "loss": 224.5978,
2877
+ "step": 474
2878
+ },
2879
+ {
2880
+ "epoch": 1.58,
2881
+ "learning_rate": 2e-05,
2882
+ "loss": 194.7379,
2883
+ "step": 475
2884
+ },
2885
+ {
2886
+ "epoch": 1.59,
2887
+ "learning_rate": 2e-05,
2888
+ "loss": 181.7932,
2889
+ "step": 476
2890
+ },
2891
+ {
2892
+ "epoch": 1.59,
2893
+ "learning_rate": 2e-05,
2894
+ "loss": 207.0792,
2895
+ "step": 477
2896
+ },
2897
+ {
2898
+ "epoch": 1.59,
2899
+ "learning_rate": 2e-05,
2900
+ "loss": 209.3582,
2901
+ "step": 478
2902
+ },
2903
+ {
2904
+ "epoch": 1.6,
2905
+ "learning_rate": 2e-05,
2906
+ "loss": 155.4181,
2907
+ "step": 479
2908
+ },
2909
+ {
2910
+ "epoch": 1.6,
2911
+ "learning_rate": 2e-05,
2912
+ "loss": 208.6905,
2913
+ "step": 480
2914
+ },
2915
+ {
2916
+ "epoch": 1.6,
2917
+ "learning_rate": 2e-05,
2918
+ "loss": 179.2064,
2919
+ "step": 481
2920
+ },
2921
+ {
2922
+ "epoch": 1.61,
2923
+ "learning_rate": 2e-05,
2924
+ "loss": 244.269,
2925
+ "step": 482
2926
+ },
2927
+ {
2928
+ "epoch": 1.61,
2929
+ "learning_rate": 2e-05,
2930
+ "loss": 203.8597,
2931
+ "step": 483
2932
+ },
2933
+ {
2934
+ "epoch": 1.61,
2935
+ "learning_rate": 2e-05,
2936
+ "loss": 215.3183,
2937
+ "step": 484
2938
+ },
2939
+ {
2940
+ "epoch": 1.62,
2941
+ "learning_rate": 2e-05,
2942
+ "loss": 209.9353,
2943
+ "step": 485
2944
+ },
2945
+ {
2946
+ "epoch": 1.62,
2947
+ "learning_rate": 2e-05,
2948
+ "loss": 208.1019,
2949
+ "step": 486
2950
+ },
2951
+ {
2952
+ "epoch": 1.62,
2953
+ "learning_rate": 2e-05,
2954
+ "loss": 185.1986,
2955
+ "step": 487
2956
+ },
2957
+ {
2958
+ "epoch": 1.63,
2959
+ "learning_rate": 2e-05,
2960
+ "loss": 221.299,
2961
+ "step": 488
2962
+ },
2963
+ {
2964
+ "epoch": 1.63,
2965
+ "learning_rate": 2e-05,
2966
+ "loss": 197.2944,
2967
+ "step": 489
2968
+ },
2969
+ {
2970
+ "epoch": 1.63,
2971
+ "learning_rate": 2e-05,
2972
+ "loss": 249.1776,
2973
+ "step": 490
2974
+ },
2975
+ {
2976
+ "epoch": 1.64,
2977
+ "learning_rate": 2e-05,
2978
+ "loss": 249.6916,
2979
+ "step": 491
2980
+ },
2981
+ {
2982
+ "epoch": 1.64,
2983
+ "learning_rate": 2e-05,
2984
+ "loss": 223.0698,
2985
+ "step": 492
2986
+ },
2987
+ {
2988
+ "epoch": 1.64,
2989
+ "learning_rate": 2e-05,
2990
+ "loss": 212.4214,
2991
+ "step": 493
2992
+ },
2993
+ {
2994
+ "epoch": 1.65,
2995
+ "learning_rate": 2e-05,
2996
+ "loss": 207.3959,
2997
+ "step": 494
2998
+ },
2999
+ {
3000
+ "epoch": 1.65,
3001
+ "learning_rate": 2e-05,
3002
+ "loss": 197.5657,
3003
+ "step": 495
3004
+ },
3005
+ {
3006
+ "epoch": 1.65,
3007
+ "learning_rate": 2e-05,
3008
+ "loss": 224.0082,
3009
+ "step": 496
3010
+ },
3011
+ {
3012
+ "epoch": 1.66,
3013
+ "learning_rate": 2e-05,
3014
+ "loss": 194.0723,
3015
+ "step": 497
3016
+ },
3017
+ {
3018
+ "epoch": 1.66,
3019
+ "learning_rate": 2e-05,
3020
+ "loss": 241.0521,
3021
+ "step": 498
3022
+ },
3023
+ {
3024
+ "epoch": 1.66,
3025
+ "learning_rate": 2e-05,
3026
+ "loss": 195.3386,
3027
+ "step": 499
3028
+ },
3029
+ {
3030
+ "epoch": 1.67,
3031
+ "learning_rate": 2e-05,
3032
+ "loss": 246.2868,
3033
+ "step": 500
3034
+ },
3035
+ {
3036
+ "epoch": 1.67,
3037
+ "learning_rate": 2e-05,
3038
+ "loss": 185.8767,
3039
+ "step": 501
3040
+ },
3041
+ {
3042
+ "epoch": 1.67,
3043
+ "learning_rate": 2e-05,
3044
+ "loss": 199.1286,
3045
+ "step": 502
3046
+ },
3047
+ {
3048
+ "epoch": 1.68,
3049
+ "learning_rate": 2e-05,
3050
+ "loss": 234.8778,
3051
+ "step": 503
3052
+ },
3053
+ {
3054
+ "epoch": 1.68,
3055
+ "learning_rate": 2e-05,
3056
+ "loss": 246.7677,
3057
+ "step": 504
3058
+ },
3059
+ {
3060
+ "epoch": 1.68,
3061
+ "learning_rate": 2e-05,
3062
+ "loss": 215.8775,
3063
+ "step": 505
3064
+ },
3065
+ {
3066
+ "epoch": 1.69,
3067
+ "learning_rate": 2e-05,
3068
+ "loss": 208.5989,
3069
+ "step": 506
3070
+ },
3071
+ {
3072
+ "epoch": 1.69,
3073
+ "learning_rate": 2e-05,
3074
+ "loss": 193.0592,
3075
+ "step": 507
3076
+ },
3077
+ {
3078
+ "epoch": 1.69,
3079
+ "learning_rate": 2e-05,
3080
+ "loss": 254.8217,
3081
+ "step": 508
3082
+ },
3083
+ {
3084
+ "epoch": 1.7,
3085
+ "learning_rate": 2e-05,
3086
+ "loss": 222.7972,
3087
+ "step": 509
3088
+ },
3089
+ {
3090
+ "epoch": 1.7,
3091
+ "learning_rate": 2e-05,
3092
+ "loss": 229.1115,
3093
+ "step": 510
3094
+ },
3095
+ {
3096
+ "epoch": 1.7,
3097
+ "learning_rate": 2e-05,
3098
+ "loss": 201.3895,
3099
+ "step": 511
3100
+ },
3101
+ {
3102
+ "epoch": 1.71,
3103
+ "learning_rate": 2e-05,
3104
+ "loss": 170.4128,
3105
+ "step": 512
3106
+ },
3107
+ {
3108
+ "epoch": 1.71,
3109
+ "learning_rate": 2e-05,
3110
+ "loss": 227.652,
3111
+ "step": 513
3112
+ },
3113
+ {
3114
+ "epoch": 1.71,
3115
+ "learning_rate": 2e-05,
3116
+ "loss": 203.8975,
3117
+ "step": 514
3118
+ },
3119
+ {
3120
+ "epoch": 1.72,
3121
+ "learning_rate": 2e-05,
3122
+ "loss": 209.6851,
3123
+ "step": 515
3124
+ },
3125
+ {
3126
+ "epoch": 1.72,
3127
+ "learning_rate": 2e-05,
3128
+ "loss": 188.932,
3129
+ "step": 516
3130
+ },
3131
+ {
3132
+ "epoch": 1.72,
3133
+ "learning_rate": 2e-05,
3134
+ "loss": 187.8048,
3135
+ "step": 517
3136
+ },
3137
+ {
3138
+ "epoch": 1.73,
3139
+ "learning_rate": 2e-05,
3140
+ "loss": 265.4262,
3141
+ "step": 518
3142
+ },
3143
+ {
3144
+ "epoch": 1.73,
3145
+ "learning_rate": 2e-05,
3146
+ "loss": 250.1163,
3147
+ "step": 519
3148
+ },
3149
+ {
3150
+ "epoch": 1.73,
3151
+ "learning_rate": 2e-05,
3152
+ "loss": 190.8139,
3153
+ "step": 520
3154
+ },
3155
+ {
3156
+ "epoch": 1.74,
3157
+ "learning_rate": 2e-05,
3158
+ "loss": 203.3908,
3159
+ "step": 521
3160
+ },
3161
+ {
3162
+ "epoch": 1.74,
3163
+ "learning_rate": 2e-05,
3164
+ "loss": 250.0257,
3165
+ "step": 522
3166
+ },
3167
+ {
3168
+ "epoch": 1.74,
3169
+ "learning_rate": 2e-05,
3170
+ "loss": 167.6775,
3171
+ "step": 523
3172
+ },
3173
+ {
3174
+ "epoch": 1.75,
3175
+ "learning_rate": 2e-05,
3176
+ "loss": 216.208,
3177
+ "step": 524
3178
+ },
3179
+ {
3180
+ "epoch": 1.75,
3181
+ "learning_rate": 2e-05,
3182
+ "loss": 248.1995,
3183
+ "step": 525
3184
+ },
3185
+ {
3186
+ "epoch": 1.75,
3187
+ "learning_rate": 2e-05,
3188
+ "loss": 186.5524,
3189
+ "step": 526
3190
+ },
3191
+ {
3192
+ "epoch": 1.76,
3193
+ "learning_rate": 2e-05,
3194
+ "loss": 198.6543,
3195
+ "step": 527
3196
+ },
3197
+ {
3198
+ "epoch": 1.76,
3199
+ "learning_rate": 2e-05,
3200
+ "loss": 221.3749,
3201
+ "step": 528
3202
+ },
3203
+ {
3204
+ "epoch": 1.76,
3205
+ "learning_rate": 2e-05,
3206
+ "loss": 239.5123,
3207
+ "step": 529
3208
+ },
3209
+ {
3210
+ "epoch": 1.77,
3211
+ "learning_rate": 2e-05,
3212
+ "loss": 202.19,
3213
+ "step": 530
3214
+ },
3215
+ {
3216
+ "epoch": 1.77,
3217
+ "learning_rate": 2e-05,
3218
+ "loss": 187.0039,
3219
+ "step": 531
3220
+ },
3221
+ {
3222
+ "epoch": 1.77,
3223
+ "learning_rate": 2e-05,
3224
+ "loss": 281.6668,
3225
+ "step": 532
3226
+ },
3227
+ {
3228
+ "epoch": 1.78,
3229
+ "learning_rate": 2e-05,
3230
+ "loss": 225.5882,
3231
+ "step": 533
3232
+ },
3233
+ {
3234
+ "epoch": 1.78,
3235
+ "learning_rate": 2e-05,
3236
+ "loss": 154.8565,
3237
+ "step": 534
3238
+ },
3239
+ {
3240
+ "epoch": 1.78,
3241
+ "learning_rate": 2e-05,
3242
+ "loss": 206.029,
3243
+ "step": 535
3244
+ },
3245
+ {
3246
+ "epoch": 1.79,
3247
+ "learning_rate": 2e-05,
3248
+ "loss": 219.6192,
3249
+ "step": 536
3250
+ },
3251
+ {
3252
+ "epoch": 1.79,
3253
+ "learning_rate": 2e-05,
3254
+ "loss": 264.9105,
3255
+ "step": 537
3256
+ },
3257
+ {
3258
+ "epoch": 1.79,
3259
+ "learning_rate": 2e-05,
3260
+ "loss": 209.3203,
3261
+ "step": 538
3262
+ },
3263
+ {
3264
+ "epoch": 1.8,
3265
+ "learning_rate": 2e-05,
3266
+ "loss": 221.2177,
3267
+ "step": 539
3268
+ },
3269
+ {
3270
+ "epoch": 1.8,
3271
+ "learning_rate": 2e-05,
3272
+ "loss": 206.0646,
3273
+ "step": 540
3274
+ },
3275
+ {
3276
+ "epoch": 1.8,
3277
+ "learning_rate": 2e-05,
3278
+ "loss": 179.302,
3279
+ "step": 541
3280
+ },
3281
+ {
3282
+ "epoch": 1.81,
3283
+ "learning_rate": 2e-05,
3284
+ "loss": 216.4368,
3285
+ "step": 542
3286
+ },
3287
+ {
3288
+ "epoch": 1.81,
3289
+ "learning_rate": 2e-05,
3290
+ "loss": 256.2146,
3291
+ "step": 543
3292
+ },
3293
+ {
3294
+ "epoch": 1.81,
3295
+ "learning_rate": 2e-05,
3296
+ "loss": 225.4241,
3297
+ "step": 544
3298
+ },
3299
+ {
3300
+ "epoch": 1.82,
3301
+ "learning_rate": 2e-05,
3302
+ "loss": 223.213,
3303
+ "step": 545
3304
+ },
3305
+ {
3306
+ "epoch": 1.82,
3307
+ "learning_rate": 2e-05,
3308
+ "loss": 224.182,
3309
+ "step": 546
3310
+ },
3311
+ {
3312
+ "epoch": 1.82,
3313
+ "learning_rate": 2e-05,
3314
+ "loss": 226.146,
3315
+ "step": 547
3316
+ },
3317
+ {
3318
+ "epoch": 1.83,
3319
+ "learning_rate": 2e-05,
3320
+ "loss": 201.2667,
3321
+ "step": 548
3322
+ },
3323
+ {
3324
+ "epoch": 1.83,
3325
+ "learning_rate": 2e-05,
3326
+ "loss": 196.2431,
3327
+ "step": 549
3328
+ },
3329
+ {
3330
+ "epoch": 1.83,
3331
+ "learning_rate": 2e-05,
3332
+ "loss": 253.1102,
3333
+ "step": 550
3334
+ },
3335
+ {
3336
+ "epoch": 1.84,
3337
+ "learning_rate": 2e-05,
3338
+ "loss": 218.3497,
3339
+ "step": 551
3340
+ },
3341
+ {
3342
+ "epoch": 1.84,
3343
+ "learning_rate": 2e-05,
3344
+ "loss": 239.5849,
3345
+ "step": 552
3346
+ },
3347
+ {
3348
+ "epoch": 1.84,
3349
+ "learning_rate": 2e-05,
3350
+ "loss": 229.3954,
3351
+ "step": 553
3352
+ },
3353
+ {
3354
+ "epoch": 1.85,
3355
+ "learning_rate": 2e-05,
3356
+ "loss": 224.5805,
3357
+ "step": 554
3358
+ },
3359
+ {
3360
+ "epoch": 1.85,
3361
+ "learning_rate": 2e-05,
3362
+ "loss": 193.1906,
3363
+ "step": 555
3364
+ },
3365
+ {
3366
+ "epoch": 1.85,
3367
+ "learning_rate": 2e-05,
3368
+ "loss": 198.8174,
3369
+ "step": 556
3370
+ },
3371
+ {
3372
+ "epoch": 1.86,
3373
+ "learning_rate": 2e-05,
3374
+ "loss": 206.2353,
3375
+ "step": 557
3376
+ },
3377
+ {
3378
+ "epoch": 1.86,
3379
+ "learning_rate": 2e-05,
3380
+ "loss": 226.555,
3381
+ "step": 558
3382
+ },
3383
+ {
3384
+ "epoch": 1.86,
3385
+ "learning_rate": 2e-05,
3386
+ "loss": 259.067,
3387
+ "step": 559
3388
+ },
3389
+ {
3390
+ "epoch": 1.87,
3391
+ "learning_rate": 2e-05,
3392
+ "loss": 204.7034,
3393
+ "step": 560
3394
+ },
3395
+ {
3396
+ "epoch": 1.87,
3397
+ "learning_rate": 2e-05,
3398
+ "loss": 237.9439,
3399
+ "step": 561
3400
+ },
3401
+ {
3402
+ "epoch": 1.87,
3403
+ "learning_rate": 2e-05,
3404
+ "loss": 197.9103,
3405
+ "step": 562
3406
+ },
3407
+ {
3408
+ "epoch": 1.88,
3409
+ "learning_rate": 2e-05,
3410
+ "loss": 217.9633,
3411
+ "step": 563
3412
+ },
3413
+ {
3414
+ "epoch": 1.88,
3415
+ "learning_rate": 2e-05,
3416
+ "loss": 212.1185,
3417
+ "step": 564
3418
+ },
3419
+ {
3420
+ "epoch": 1.88,
3421
+ "learning_rate": 2e-05,
3422
+ "loss": 173.727,
3423
+ "step": 565
3424
+ },
3425
+ {
3426
+ "epoch": 1.89,
3427
+ "learning_rate": 2e-05,
3428
+ "loss": 212.4548,
3429
+ "step": 566
3430
+ },
3431
+ {
3432
+ "epoch": 1.89,
3433
+ "learning_rate": 2e-05,
3434
+ "loss": 269.4512,
3435
+ "step": 567
3436
+ },
3437
+ {
3438
+ "epoch": 1.89,
3439
+ "learning_rate": 2e-05,
3440
+ "loss": 219.3664,
3441
+ "step": 568
3442
+ },
3443
+ {
3444
+ "epoch": 1.9,
3445
+ "learning_rate": 2e-05,
3446
+ "loss": 200.041,
3447
+ "step": 569
3448
+ },
3449
+ {
3450
+ "epoch": 1.9,
3451
+ "learning_rate": 2e-05,
3452
+ "loss": 196.7029,
3453
+ "step": 570
3454
+ },
3455
+ {
3456
+ "epoch": 1.9,
3457
+ "learning_rate": 2e-05,
3458
+ "loss": 225.4566,
3459
+ "step": 571
3460
+ },
3461
+ {
3462
+ "epoch": 1.91,
3463
+ "learning_rate": 2e-05,
3464
+ "loss": 212.7281,
3465
+ "step": 572
3466
+ },
3467
+ {
3468
+ "epoch": 1.91,
3469
+ "learning_rate": 2e-05,
3470
+ "loss": 187.6301,
3471
+ "step": 573
3472
+ },
3473
+ {
3474
+ "epoch": 1.91,
3475
+ "learning_rate": 2e-05,
3476
+ "loss": 335.6991,
3477
+ "step": 574
3478
+ },
3479
+ {
3480
+ "epoch": 1.92,
3481
+ "learning_rate": 2e-05,
3482
+ "loss": 153.5664,
3483
+ "step": 575
3484
+ },
3485
+ {
3486
+ "epoch": 1.92,
3487
+ "learning_rate": 2e-05,
3488
+ "loss": 217.0094,
3489
+ "step": 576
3490
+ },
3491
+ {
3492
+ "epoch": 1.92,
3493
+ "learning_rate": 2e-05,
3494
+ "loss": 255.8123,
3495
+ "step": 577
3496
+ },
3497
+ {
3498
+ "epoch": 1.93,
3499
+ "learning_rate": 2e-05,
3500
+ "loss": 206.1462,
3501
+ "step": 578
3502
+ },
3503
+ {
3504
+ "epoch": 1.93,
3505
+ "learning_rate": 2e-05,
3506
+ "loss": 242.3889,
3507
+ "step": 579
3508
+ },
3509
+ {
3510
+ "epoch": 1.93,
3511
+ "learning_rate": 2e-05,
3512
+ "loss": 218.3518,
3513
+ "step": 580
3514
+ },
3515
+ {
3516
+ "epoch": 1.94,
3517
+ "learning_rate": 2e-05,
3518
+ "loss": 200.9317,
3519
+ "step": 581
3520
+ },
3521
+ {
3522
+ "epoch": 1.94,
3523
+ "learning_rate": 2e-05,
3524
+ "loss": 212.1096,
3525
+ "step": 582
3526
+ },
3527
+ {
3528
+ "epoch": 1.94,
3529
+ "learning_rate": 2e-05,
3530
+ "loss": 213.4619,
3531
+ "step": 583
3532
+ },
3533
+ {
3534
+ "epoch": 1.95,
3535
+ "learning_rate": 2e-05,
3536
+ "loss": 232.34,
3537
+ "step": 584
3538
+ },
3539
+ {
3540
+ "epoch": 1.95,
3541
+ "learning_rate": 2e-05,
3542
+ "loss": 159.0329,
3543
+ "step": 585
3544
+ },
3545
+ {
3546
+ "epoch": 1.95,
3547
+ "learning_rate": 2e-05,
3548
+ "loss": 221.9789,
3549
+ "step": 586
3550
+ },
3551
+ {
3552
+ "epoch": 1.96,
3553
+ "learning_rate": 2e-05,
3554
+ "loss": 224.5071,
3555
+ "step": 587
3556
+ },
3557
+ {
3558
+ "epoch": 1.96,
3559
+ "learning_rate": 2e-05,
3560
+ "loss": 251.3988,
3561
+ "step": 588
3562
+ },
3563
+ {
3564
+ "epoch": 1.96,
3565
+ "learning_rate": 2e-05,
3566
+ "loss": 228.7717,
3567
+ "step": 589
3568
+ },
3569
+ {
3570
+ "epoch": 1.97,
3571
+ "learning_rate": 2e-05,
3572
+ "loss": 187.2274,
3573
+ "step": 590
3574
+ },
3575
+ {
3576
+ "epoch": 1.97,
3577
+ "learning_rate": 2e-05,
3578
+ "loss": 213.5903,
3579
+ "step": 591
3580
+ },
3581
+ {
3582
+ "epoch": 1.97,
3583
+ "learning_rate": 2e-05,
3584
+ "loss": 196.8019,
3585
+ "step": 592
3586
+ },
3587
+ {
3588
+ "epoch": 1.98,
3589
+ "learning_rate": 2e-05,
3590
+ "loss": 225.6396,
3591
+ "step": 593
3592
+ },
3593
+ {
3594
+ "epoch": 1.98,
3595
+ "learning_rate": 2e-05,
3596
+ "loss": 250.5785,
3597
+ "step": 594
3598
+ },
3599
+ {
3600
+ "epoch": 1.98,
3601
+ "learning_rate": 2e-05,
3602
+ "loss": 180.8865,
3603
+ "step": 595
3604
+ },
3605
+ {
3606
+ "epoch": 1.99,
3607
+ "learning_rate": 2e-05,
3608
+ "loss": 190.5121,
3609
+ "step": 596
3610
+ },
3611
+ {
3612
+ "epoch": 1.99,
3613
+ "learning_rate": 2e-05,
3614
+ "loss": 166.3393,
3615
+ "step": 597
3616
+ },
3617
+ {
3618
+ "epoch": 1.99,
3619
+ "learning_rate": 2e-05,
3620
+ "loss": 187.183,
3621
+ "step": 598
3622
+ },
3623
+ {
3624
+ "epoch": 2.0,
3625
+ "learning_rate": 2e-05,
3626
+ "loss": 199.8197,
3627
+ "step": 599
3628
+ },
3629
+ {
3630
+ "epoch": 2.0,
3631
+ "learning_rate": 2e-05,
3632
+ "loss": 231.2036,
3633
+ "step": 600
3634
+ },
3635
+ {
3636
+ "epoch": 2.0,
3637
+ "eval_loss": 217.99810791015625,
3638
+ "eval_runtime": 288.0687,
3639
+ "eval_samples_per_second": 16.663,
3640
+ "eval_steps_per_second": 1.041,
3641
+ "step": 600
3642
+ }
3643
+ ],
3644
+ "logging_steps": 1.0,
3645
+ "max_steps": 600,
3646
+ "num_input_tokens_seen": 0,
3647
+ "num_train_epochs": 2,
3648
+ "save_steps": 20,
3649
+ "total_flos": 2.440725761359872e+17,
3650
+ "train_batch_size": 16,
3651
+ "trial_name": null,
3652
+ "trial_params": null
3653
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0712a0c90a101e7ede81ab3be7244838334b7cc7b735be1d23f1cc1a57d2cd88
3
+ size 6392
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)