Upload folder using huggingface_hub
Browse files- artifacts/luxical-one/config.json +11 -0
- artifacts/luxical-one/luxical_hf_wrapper.py +398 -0
- artifacts/luxical-one/model.safetensors +3 -0
- config.json +11 -0
- luxical_hf_wrapper.py +398 -0
- model.safetensors +3 -0
artifacts/luxical-one/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoConfig": "luxical_hf_wrapper.LuxicalOneConfig",
|
| 5 |
+
"AutoModel": "luxical_hf_wrapper.LuxicalOneModel"
|
| 6 |
+
},
|
| 7 |
+
"embedding_dim": 192,
|
| 8 |
+
"max_ngram_length": 5,
|
| 9 |
+
"model_type": "luxical-one",
|
| 10 |
+
"transformers_version": "4.51.3"
|
| 11 |
+
}
|
artifacts/luxical-one/luxical_hf_wrapper.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Sequence
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pyarrow as pa
|
| 10 |
+
import torch
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 13 |
+
from transformers.modeling_outputs import ModelOutput
|
| 14 |
+
|
| 15 |
+
from luxical.embedder import Embedder, _pack_int_dict, _unpack_int_dict
|
| 16 |
+
from luxical.sparse_to_dense_neural_nets import SparseToDenseEmbedder
|
| 17 |
+
from luxical.tokenization import ArrowTokenizer
|
| 18 |
+
|
| 19 |
+
DEFAULT_EMBEDDER_FILENAME = "luxical_one_embedder.npz" # deprecated; no longer used
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class LuxicalOneConfig(PretrainedConfig):
|
| 23 |
+
"""Configuration for the Luxical Huggingface wrapper.
|
| 24 |
+
|
| 25 |
+
Generic for any Luxical `Embedder` serialized in format version 1.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
model_type = "luxical-one"
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
*,
|
| 33 |
+
max_ngram_length: int | None = None,
|
| 34 |
+
embedding_dim: int | None = None,
|
| 35 |
+
**kwargs,
|
| 36 |
+
) -> None:
|
| 37 |
+
super().__init__(**kwargs)
|
| 38 |
+
self.max_ngram_length = max_ngram_length
|
| 39 |
+
self.embedding_dim = embedding_dim
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class LuxicalOneModelOutput(ModelOutput):
|
| 44 |
+
embeddings: Tensor
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class LuxicalOneModel(PreTrainedModel):
|
| 48 |
+
"""Huggingface `PreTrainedModel` wrapper around a Luxical `Embedder`.
|
| 49 |
+
|
| 50 |
+
Not tied to a specific checkpoint; reconstructs the `Embedder` from
|
| 51 |
+
serialized state stored in the weights. Safetensors-only export.
|
| 52 |
+
"""
|
| 53 |
+
config_class = LuxicalOneConfig
|
| 54 |
+
|
| 55 |
+
@classmethod
|
| 56 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): # type: ignore[override]
|
| 57 |
+
"""Load model and reconstruct the Luxical embedder from safetensors.
|
| 58 |
+
|
| 59 |
+
Keeps logic minimal and safetensors-only to avoid legacy branches.
|
| 60 |
+
"""
|
| 61 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
| 62 |
+
try:
|
| 63 |
+
from transformers.utils import SAFE_WEIGHTS_NAME, cached_file
|
| 64 |
+
from safetensors.torch import load_file as load_safetensors # type: ignore
|
| 65 |
+
except Exception:
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
revision = kwargs.get("revision")
|
| 69 |
+
cache_dir = kwargs.get("cache_dir")
|
| 70 |
+
force_download = kwargs.get("force_download", False)
|
| 71 |
+
proxies = kwargs.get("proxies")
|
| 72 |
+
token = kwargs.get("token")
|
| 73 |
+
local_files_only = kwargs.get("local_files_only", False)
|
| 74 |
+
|
| 75 |
+
weight_path = None
|
| 76 |
+
try:
|
| 77 |
+
weight_path = cached_file(
|
| 78 |
+
pretrained_model_name_or_path,
|
| 79 |
+
SAFE_WEIGHTS_NAME,
|
| 80 |
+
revision=revision,
|
| 81 |
+
cache_dir=cache_dir,
|
| 82 |
+
force_download=force_download,
|
| 83 |
+
proxies=proxies,
|
| 84 |
+
token=token,
|
| 85 |
+
local_files_only=local_files_only,
|
| 86 |
+
)
|
| 87 |
+
except Exception:
|
| 88 |
+
pass
|
| 89 |
+
if weight_path is None:
|
| 90 |
+
cand = Path(pretrained_model_name_or_path) / "model.safetensors"
|
| 91 |
+
if cand.exists():
|
| 92 |
+
weight_path = str(cand)
|
| 93 |
+
|
| 94 |
+
if weight_path is not None:
|
| 95 |
+
try:
|
| 96 |
+
sd = load_safetensors(weight_path)
|
| 97 |
+
model._embedder = _embedder_from_state_dict(sd)
|
| 98 |
+
model._embedder_path = None
|
| 99 |
+
except Exception:
|
| 100 |
+
pass
|
| 101 |
+
return model
|
| 102 |
+
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
config: LuxicalOneConfig,
|
| 106 |
+
*,
|
| 107 |
+
embedder: Embedder | None = None,
|
| 108 |
+
embedder_path: str | Path | None = None,
|
| 109 |
+
) -> None:
|
| 110 |
+
self._embedder: Embedder | None = embedder
|
| 111 |
+
self._embedder_path: Path | None = (
|
| 112 |
+
Path(embedder_path).resolve() if embedder_path is not None else None
|
| 113 |
+
)
|
| 114 |
+
super().__init__(config)
|
| 115 |
+
|
| 116 |
+
def post_init(self) -> None:
|
| 117 |
+
super().post_init()
|
| 118 |
+
if self._embedder is not None:
|
| 119 |
+
self.config.embedding_dim = self._embedder.embedding_dim
|
| 120 |
+
self.config.max_ngram_length = self._embedder.max_ngram_length
|
| 121 |
+
|
| 122 |
+
def forward(
|
| 123 |
+
self,
|
| 124 |
+
input_texts: Sequence[str] | pa.StringArray | None = None,
|
| 125 |
+
*,
|
| 126 |
+
batch_size: int = 4096,
|
| 127 |
+
progress_bars: bool = False,
|
| 128 |
+
) -> LuxicalOneModelOutput:
|
| 129 |
+
if input_texts is None:
|
| 130 |
+
msg = "input_texts must be provided"
|
| 131 |
+
raise ValueError(msg)
|
| 132 |
+
embedder = self._ensure_embedder_loaded()
|
| 133 |
+
embeddings_np = embedder(
|
| 134 |
+
texts=input_texts,
|
| 135 |
+
batch_size=batch_size,
|
| 136 |
+
progress_bars=progress_bars,
|
| 137 |
+
)
|
| 138 |
+
embeddings = torch.from_numpy(embeddings_np)
|
| 139 |
+
return LuxicalOneModelOutput(embeddings=embeddings)
|
| 140 |
+
|
| 141 |
+
def save_pretrained(
|
| 142 |
+
self,
|
| 143 |
+
save_directory: str | Path,
|
| 144 |
+
*args,
|
| 145 |
+
**kwargs,
|
| 146 |
+
) -> tuple[OrderedDict[str, Tensor], LuxicalOneConfig]:
|
| 147 |
+
save_path = Path(save_directory)
|
| 148 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 149 |
+
# Prepare config with auto_map so AutoModel can import this module when
|
| 150 |
+
# loading from a Hub/local repo with trust_remote_code=True.
|
| 151 |
+
self.config.auto_map = {
|
| 152 |
+
"AutoConfig": "luxical_hf_wrapper.LuxicalOneConfig",
|
| 153 |
+
"AutoModel": "luxical_hf_wrapper.LuxicalOneModel",
|
| 154 |
+
}
|
| 155 |
+
# Persist the embedder inside a single Safetensors file.
|
| 156 |
+
embedder = self._ensure_embedder_loaded()
|
| 157 |
+
state_dict = _embedder_to_state_dict(embedder)
|
| 158 |
+
from safetensors.torch import save_file as save_safetensors # type: ignore
|
| 159 |
+
save_safetensors(state_dict, str(save_path / "model.safetensors"))
|
| 160 |
+
# Copy this module alongside to support remote code loading.
|
| 161 |
+
import inspect
|
| 162 |
+
import shutil
|
| 163 |
+
|
| 164 |
+
module_src = Path(inspect.getsourcefile(LuxicalOneModel) or __file__).resolve()
|
| 165 |
+
shutil.copyfile(module_src, save_path / "luxical_hf_wrapper.py")
|
| 166 |
+
# Save config.json last.
|
| 167 |
+
self.config.save_pretrained(save_path)
|
| 168 |
+
return state_dict, self.config
|
| 169 |
+
|
| 170 |
+
def load_state_dict(
|
| 171 |
+
self, state_dict: OrderedDict[str, Tensor], strict: bool = True
|
| 172 |
+
): # type: ignore[override]
|
| 173 |
+
# Interpret the state dict as a serialized Luxical Embedder and rebuild it.
|
| 174 |
+
try:
|
| 175 |
+
self._embedder = _embedder_from_state_dict(state_dict)
|
| 176 |
+
self._embedder_path = None
|
| 177 |
+
# Update config fields if available
|
| 178 |
+
self.config.embedding_dim = self._embedder.embedding_dim
|
| 179 |
+
self.config.max_ngram_length = self._embedder.max_ngram_length
|
| 180 |
+
return torch.nn.modules.module._IncompatibleKeys([], [])
|
| 181 |
+
except KeyError:
|
| 182 |
+
if strict:
|
| 183 |
+
missing = list(state_dict.keys())
|
| 184 |
+
raise NotImplementedError(
|
| 185 |
+
"LuxicalOneModel expected serialized embedder tensors; "
|
| 186 |
+
f"unexpected keys: {missing}"
|
| 187 |
+
)
|
| 188 |
+
return torch.nn.modules.module._IncompatibleKeys([], list(state_dict.keys()))
|
| 189 |
+
|
| 190 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 191 |
+
msg = "LuxicalOneModel does not expose token embeddings."
|
| 192 |
+
raise NotImplementedError(msg)
|
| 193 |
+
|
| 194 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 195 |
+
msg = "LuxicalOneModel does not support replacing token embeddings."
|
| 196 |
+
raise NotImplementedError(msg)
|
| 197 |
+
|
| 198 |
+
def resize_token_embeddings(self, *args, **kwargs) -> None:
|
| 199 |
+
msg = "LuxicalOneModel does not use token embeddings."
|
| 200 |
+
raise NotImplementedError(msg)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def _ensure_embedder_loaded(self) -> Embedder:
|
| 204 |
+
if self._embedder is not None:
|
| 205 |
+
return self._embedder
|
| 206 |
+
raise RuntimeError(
|
| 207 |
+
"Luxical embedder is not initialized. Load this model via "
|
| 208 |
+
"AutoModel/LuxicalOneModel.from_pretrained so weights can be "
|
| 209 |
+
"decoded into an Embedder."
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# No legacy file-based loader; all state lives in model.safetensors.
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def export_embedder_to_huggingface_directory(
|
| 216 |
+
embedder: Embedder,
|
| 217 |
+
save_directory: str | Path,
|
| 218 |
+
*,
|
| 219 |
+
config_overrides: dict[str, object] | None = None,
|
| 220 |
+
) -> Path:
|
| 221 |
+
save_path = Path(save_directory)
|
| 222 |
+
config = LuxicalOneConfig(
|
| 223 |
+
max_ngram_length=embedder.max_ngram_length,
|
| 224 |
+
embedding_dim=embedder.embedding_dim,
|
| 225 |
+
**(config_overrides or {}),
|
| 226 |
+
)
|
| 227 |
+
config.name_or_path = str(save_path.resolve())
|
| 228 |
+
model = LuxicalOneModel(config=config, embedder=embedder)
|
| 229 |
+
model.save_pretrained(save_path)
|
| 230 |
+
return save_path
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# No global Auto* registration; exports include `auto_map` in config.json.
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def _embedder_to_state_dict(embedder: Embedder) -> OrderedDict[str, Tensor]:
|
| 237 |
+
sd: "OrderedDict[str, Tensor]" = OrderedDict()
|
| 238 |
+
# Version
|
| 239 |
+
sd["embedder.version"] = torch.tensor([1], dtype=torch.long)
|
| 240 |
+
# Tokenizer json bytes
|
| 241 |
+
tok_bytes = np.frombuffer(embedder.tokenizer.to_str().encode("utf-8"), dtype=np.uint8)
|
| 242 |
+
sd["embedder.tokenizer"] = torch.from_numpy(tok_bytes.copy())
|
| 243 |
+
# Recognized ngrams
|
| 244 |
+
sd["embedder.recognized_ngrams"] = torch.from_numpy(embedder.recognized_ngrams.astype(np.int64, copy=False))
|
| 245 |
+
# Hash map keys/values
|
| 246 |
+
keys, vals = _unpack_int_dict(embedder.ngram_hash_to_ngram_idx)
|
| 247 |
+
sd["embedder.ngram_keys"] = torch.from_numpy(keys.astype(np.int64, copy=False))
|
| 248 |
+
sd["embedder.ngram_vals"] = torch.from_numpy(vals.astype(np.int64, copy=False))
|
| 249 |
+
# IDF
|
| 250 |
+
sd["embedder.idf_values"] = torch.from_numpy(embedder.idf_values.astype(np.float32, copy=False))
|
| 251 |
+
# Layers
|
| 252 |
+
layers = embedder.bow_to_dense_embedder.layers
|
| 253 |
+
sd["embedder.num_layers"] = torch.tensor([len(layers)], dtype=torch.long)
|
| 254 |
+
for i, layer in enumerate(layers):
|
| 255 |
+
sd[f"embedder.nn_layer_{i}"] = torch.from_numpy(layer.astype(np.float32, copy=False))
|
| 256 |
+
return sd
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _embedder_from_state_dict(state_dict: OrderedDict[str, Tensor]) -> Embedder:
|
| 260 |
+
version = int(state_dict["embedder.version"][0].item())
|
| 261 |
+
if version != 1:
|
| 262 |
+
raise NotImplementedError(f"Unsupported embedder version: {version}")
|
| 263 |
+
tok_bytes = bytes(state_dict["embedder.tokenizer"].cpu().numpy().astype(np.uint8).tolist())
|
| 264 |
+
tokenizer = ArrowTokenizer(tok_bytes.decode("utf-8"))
|
| 265 |
+
recognized_ngrams = state_dict["embedder.recognized_ngrams"].cpu().numpy().astype(np.int64, copy=False)
|
| 266 |
+
keys = state_dict["embedder.ngram_keys"].cpu().numpy().astype(np.int64, copy=False)
|
| 267 |
+
vals = state_dict["embedder.ngram_vals"].cpu().numpy().astype(np.int64, copy=False)
|
| 268 |
+
ngram_map = _pack_int_dict(keys, vals)
|
| 269 |
+
idf_values = state_dict["embedder.idf_values"].cpu().numpy().astype(np.float32, copy=False)
|
| 270 |
+
num_layers = int(state_dict["embedder.num_layers"][0].item())
|
| 271 |
+
layers = [
|
| 272 |
+
state_dict[f"embedder.nn_layer_{i}"].cpu().numpy().astype(np.float32, copy=False)
|
| 273 |
+
for i in range(num_layers)
|
| 274 |
+
]
|
| 275 |
+
s2d = SparseToDenseEmbedder(layers=layers)
|
| 276 |
+
return Embedder(
|
| 277 |
+
tokenizer=tokenizer,
|
| 278 |
+
recognized_ngrams=recognized_ngrams,
|
| 279 |
+
ngram_hash_to_ngram_idx=ngram_map,
|
| 280 |
+
idf_values=idf_values,
|
| 281 |
+
bow_to_dense_embedder=s2d,
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def _parse_cli_args() -> tuple[str, dict[str, object]]:
|
| 286 |
+
import argparse
|
| 287 |
+
|
| 288 |
+
parser = argparse.ArgumentParser(
|
| 289 |
+
description="Luxical One Huggingface wrapper: export and verify utilities.",
|
| 290 |
+
)
|
| 291 |
+
sub = parser.add_subparsers(dest="cmd", required=True)
|
| 292 |
+
|
| 293 |
+
p_export = sub.add_parser(
|
| 294 |
+
"export", help="Export a HF-formatted directory from a Luxical embedder .npz checkpoint"
|
| 295 |
+
)
|
| 296 |
+
p_export.add_argument(
|
| 297 |
+
"--checkpoint",
|
| 298 |
+
type=str,
|
| 299 |
+
default=str(Path("/tmp/luxical_one_rc4.npz")),
|
| 300 |
+
help="Path to Luxical embedder .npz checkpoint",
|
| 301 |
+
)
|
| 302 |
+
p_export.add_argument(
|
| 303 |
+
"--output-dir",
|
| 304 |
+
type=str,
|
| 305 |
+
default=str(Path(__file__).resolve().parent / "artifacts" / "luxical_one_hf"),
|
| 306 |
+
help="Directory to write the Huggingface-formatted model",
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
p_verify = sub.add_parser(
|
| 310 |
+
"verify", help="Verify HF-loaded model matches native Embedder outputs"
|
| 311 |
+
)
|
| 312 |
+
p_verify.add_argument(
|
| 313 |
+
"--checkpoint",
|
| 314 |
+
type=str,
|
| 315 |
+
default=str(Path("/tmp/luxical_one_rc4.npz")),
|
| 316 |
+
help="Path to Luxical embedder .npz checkpoint",
|
| 317 |
+
)
|
| 318 |
+
p_verify.add_argument(
|
| 319 |
+
"--export-dir",
|
| 320 |
+
type=str,
|
| 321 |
+
default=str(Path(__file__).resolve().parent / "artifacts" / "luxical_one_hf"),
|
| 322 |
+
help="HF directory to create/use for verification",
|
| 323 |
+
)
|
| 324 |
+
p_verify.add_argument(
|
| 325 |
+
"--batch-size", type=int, default=3, help="Batch size for verification"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
args = parser.parse_args()
|
| 329 |
+
return args.cmd, vars(args)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def _sample_texts() -> list[str]:
|
| 333 |
+
return [
|
| 334 |
+
"Luxical embeddings make tf-idf sparkle.",
|
| 335 |
+
"This sentence tests the Huggingface wrapper path.",
|
| 336 |
+
"Short.",
|
| 337 |
+
]
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def _cmd_export(checkpoint: str, output_dir: str) -> None:
|
| 341 |
+
ckpt_path = Path(checkpoint).expanduser().resolve()
|
| 342 |
+
if not ckpt_path.exists():
|
| 343 |
+
raise FileNotFoundError(
|
| 344 |
+
f"Checkpoint not found at {ckpt_path}. Download with: aws s3 cp "
|
| 345 |
+
"s3://datology-external-artifacts/luxical/luxical_one_rc4.npz "
|
| 346 |
+
"/tmp/luxical_one_rc4.npz"
|
| 347 |
+
)
|
| 348 |
+
out_dir = Path(output_dir).expanduser().resolve()
|
| 349 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 350 |
+
embedder = Embedder.load(ckpt_path)
|
| 351 |
+
export_embedder_to_huggingface_directory(embedder, out_dir)
|
| 352 |
+
print(f"Huggingface directory written to {out_dir}")
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _cmd_verify(checkpoint: str, export_dir: str, batch_size: int) -> None:
|
| 356 |
+
ckpt_path = Path(checkpoint).expanduser().resolve()
|
| 357 |
+
if not ckpt_path.exists():
|
| 358 |
+
raise FileNotFoundError(
|
| 359 |
+
f"Checkpoint not found at {ckpt_path}. Download with: aws s3 cp "
|
| 360 |
+
"s3://datology-external-artifacts/luxical/luxical_one_rc4.npz "
|
| 361 |
+
"/tmp/luxical_one_rc4.npz"
|
| 362 |
+
)
|
| 363 |
+
exp_dir = Path(export_dir).expanduser().resolve()
|
| 364 |
+
exp_dir.mkdir(parents=True, exist_ok=True)
|
| 365 |
+
|
| 366 |
+
texts = _sample_texts()
|
| 367 |
+
embedder = Embedder.load(ckpt_path)
|
| 368 |
+
ref = embedder(texts, batch_size=batch_size)
|
| 369 |
+
|
| 370 |
+
export_embedder_to_huggingface_directory(embedder, exp_dir)
|
| 371 |
+
# Load using AutoModel so this mirrors user experience, with remote code.
|
| 372 |
+
from transformers import AutoModel # local import to keep top-level light
|
| 373 |
+
model = AutoModel.from_pretrained(exp_dir, trust_remote_code=True)
|
| 374 |
+
model.eval()
|
| 375 |
+
with torch.inference_mode():
|
| 376 |
+
out = (
|
| 377 |
+
model(texts, batch_size=batch_size, progress_bars=False)
|
| 378 |
+
.embeddings.cpu()
|
| 379 |
+
.numpy()
|
| 380 |
+
)
|
| 381 |
+
import numpy as np
|
| 382 |
+
|
| 383 |
+
np.testing.assert_allclose(out, ref, rtol=1e-5, atol=1e-6)
|
| 384 |
+
print("Verification succeeded: Huggingface model matches embedder output.")
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
cmd, kv = _parse_cli_args()
|
| 389 |
+
if cmd == "export":
|
| 390 |
+
_cmd_export(checkpoint=str(kv["checkpoint"]), output_dir=str(kv["output_dir"]))
|
| 391 |
+
elif cmd == "verify":
|
| 392 |
+
_cmd_verify(
|
| 393 |
+
checkpoint=str(kv["checkpoint"]),
|
| 394 |
+
export_dir=str(kv["export_dir"]),
|
| 395 |
+
batch_size=int(kv["batch_size"]),
|
| 396 |
+
)
|
| 397 |
+
else:
|
| 398 |
+
raise SystemExit(f"Unknown command: {cmd}")
|
artifacts/luxical-one/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ec24f66cba56eb308214cd5078fffa37bf3316c70ca6c3f455d4ab60d7d2a95
|
| 3 |
+
size 929754793
|
config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_attn_implementation_autoset": true,
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoConfig": "luxical_hf_wrapper.LuxicalOneConfig",
|
| 5 |
+
"AutoModel": "luxical_hf_wrapper.LuxicalOneModel"
|
| 6 |
+
},
|
| 7 |
+
"embedding_dim": 192,
|
| 8 |
+
"max_ngram_length": 5,
|
| 9 |
+
"model_type": "luxical-one",
|
| 10 |
+
"transformers_version": "4.51.3"
|
| 11 |
+
}
|
luxical_hf_wrapper.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Sequence
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pyarrow as pa
|
| 10 |
+
import torch
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 13 |
+
from transformers.modeling_outputs import ModelOutput
|
| 14 |
+
|
| 15 |
+
from luxical.embedder import Embedder, _pack_int_dict, _unpack_int_dict
|
| 16 |
+
from luxical.sparse_to_dense_neural_nets import SparseToDenseEmbedder
|
| 17 |
+
from luxical.tokenization import ArrowTokenizer
|
| 18 |
+
|
| 19 |
+
DEFAULT_EMBEDDER_FILENAME = "luxical_one_embedder.npz" # deprecated; no longer used
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class LuxicalOneConfig(PretrainedConfig):
|
| 23 |
+
"""Configuration for the Luxical Huggingface wrapper.
|
| 24 |
+
|
| 25 |
+
Generic for any Luxical `Embedder` serialized in format version 1.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
model_type = "luxical-one"
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
*,
|
| 33 |
+
max_ngram_length: int | None = None,
|
| 34 |
+
embedding_dim: int | None = None,
|
| 35 |
+
**kwargs,
|
| 36 |
+
) -> None:
|
| 37 |
+
super().__init__(**kwargs)
|
| 38 |
+
self.max_ngram_length = max_ngram_length
|
| 39 |
+
self.embedding_dim = embedding_dim
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class LuxicalOneModelOutput(ModelOutput):
|
| 44 |
+
embeddings: Tensor
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class LuxicalOneModel(PreTrainedModel):
|
| 48 |
+
"""Huggingface `PreTrainedModel` wrapper around a Luxical `Embedder`.
|
| 49 |
+
|
| 50 |
+
Not tied to a specific checkpoint; reconstructs the `Embedder` from
|
| 51 |
+
serialized state stored in the weights. Safetensors-only export.
|
| 52 |
+
"""
|
| 53 |
+
config_class = LuxicalOneConfig
|
| 54 |
+
|
| 55 |
+
@classmethod
|
| 56 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): # type: ignore[override]
|
| 57 |
+
"""Load model and reconstruct the Luxical embedder from safetensors.
|
| 58 |
+
|
| 59 |
+
Keeps logic minimal and safetensors-only to avoid legacy branches.
|
| 60 |
+
"""
|
| 61 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
| 62 |
+
try:
|
| 63 |
+
from transformers.utils import SAFE_WEIGHTS_NAME, cached_file
|
| 64 |
+
from safetensors.torch import load_file as load_safetensors # type: ignore
|
| 65 |
+
except Exception:
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
revision = kwargs.get("revision")
|
| 69 |
+
cache_dir = kwargs.get("cache_dir")
|
| 70 |
+
force_download = kwargs.get("force_download", False)
|
| 71 |
+
proxies = kwargs.get("proxies")
|
| 72 |
+
token = kwargs.get("token")
|
| 73 |
+
local_files_only = kwargs.get("local_files_only", False)
|
| 74 |
+
|
| 75 |
+
weight_path = None
|
| 76 |
+
try:
|
| 77 |
+
weight_path = cached_file(
|
| 78 |
+
pretrained_model_name_or_path,
|
| 79 |
+
SAFE_WEIGHTS_NAME,
|
| 80 |
+
revision=revision,
|
| 81 |
+
cache_dir=cache_dir,
|
| 82 |
+
force_download=force_download,
|
| 83 |
+
proxies=proxies,
|
| 84 |
+
token=token,
|
| 85 |
+
local_files_only=local_files_only,
|
| 86 |
+
)
|
| 87 |
+
except Exception:
|
| 88 |
+
pass
|
| 89 |
+
if weight_path is None:
|
| 90 |
+
cand = Path(pretrained_model_name_or_path) / "model.safetensors"
|
| 91 |
+
if cand.exists():
|
| 92 |
+
weight_path = str(cand)
|
| 93 |
+
|
| 94 |
+
if weight_path is not None:
|
| 95 |
+
try:
|
| 96 |
+
sd = load_safetensors(weight_path)
|
| 97 |
+
model._embedder = _embedder_from_state_dict(sd)
|
| 98 |
+
model._embedder_path = None
|
| 99 |
+
except Exception:
|
| 100 |
+
pass
|
| 101 |
+
return model
|
| 102 |
+
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
config: LuxicalOneConfig,
|
| 106 |
+
*,
|
| 107 |
+
embedder: Embedder | None = None,
|
| 108 |
+
embedder_path: str | Path | None = None,
|
| 109 |
+
) -> None:
|
| 110 |
+
self._embedder: Embedder | None = embedder
|
| 111 |
+
self._embedder_path: Path | None = (
|
| 112 |
+
Path(embedder_path).resolve() if embedder_path is not None else None
|
| 113 |
+
)
|
| 114 |
+
super().__init__(config)
|
| 115 |
+
|
| 116 |
+
def post_init(self) -> None:
|
| 117 |
+
super().post_init()
|
| 118 |
+
if self._embedder is not None:
|
| 119 |
+
self.config.embedding_dim = self._embedder.embedding_dim
|
| 120 |
+
self.config.max_ngram_length = self._embedder.max_ngram_length
|
| 121 |
+
|
| 122 |
+
def forward(
|
| 123 |
+
self,
|
| 124 |
+
input_texts: Sequence[str] | pa.StringArray | None = None,
|
| 125 |
+
*,
|
| 126 |
+
batch_size: int = 4096,
|
| 127 |
+
progress_bars: bool = False,
|
| 128 |
+
) -> LuxicalOneModelOutput:
|
| 129 |
+
if input_texts is None:
|
| 130 |
+
msg = "input_texts must be provided"
|
| 131 |
+
raise ValueError(msg)
|
| 132 |
+
embedder = self._ensure_embedder_loaded()
|
| 133 |
+
embeddings_np = embedder(
|
| 134 |
+
texts=input_texts,
|
| 135 |
+
batch_size=batch_size,
|
| 136 |
+
progress_bars=progress_bars,
|
| 137 |
+
)
|
| 138 |
+
embeddings = torch.from_numpy(embeddings_np)
|
| 139 |
+
return LuxicalOneModelOutput(embeddings=embeddings)
|
| 140 |
+
|
| 141 |
+
def save_pretrained(
|
| 142 |
+
self,
|
| 143 |
+
save_directory: str | Path,
|
| 144 |
+
*args,
|
| 145 |
+
**kwargs,
|
| 146 |
+
) -> tuple[OrderedDict[str, Tensor], LuxicalOneConfig]:
|
| 147 |
+
save_path = Path(save_directory)
|
| 148 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 149 |
+
# Prepare config with auto_map so AutoModel can import this module when
|
| 150 |
+
# loading from a Hub/local repo with trust_remote_code=True.
|
| 151 |
+
self.config.auto_map = {
|
| 152 |
+
"AutoConfig": "luxical_hf_wrapper.LuxicalOneConfig",
|
| 153 |
+
"AutoModel": "luxical_hf_wrapper.LuxicalOneModel",
|
| 154 |
+
}
|
| 155 |
+
# Persist the embedder inside a single Safetensors file.
|
| 156 |
+
embedder = self._ensure_embedder_loaded()
|
| 157 |
+
state_dict = _embedder_to_state_dict(embedder)
|
| 158 |
+
from safetensors.torch import save_file as save_safetensors # type: ignore
|
| 159 |
+
save_safetensors(state_dict, str(save_path / "model.safetensors"))
|
| 160 |
+
# Copy this module alongside to support remote code loading.
|
| 161 |
+
import inspect
|
| 162 |
+
import shutil
|
| 163 |
+
|
| 164 |
+
module_src = Path(inspect.getsourcefile(LuxicalOneModel) or __file__).resolve()
|
| 165 |
+
shutil.copyfile(module_src, save_path / "luxical_hf_wrapper.py")
|
| 166 |
+
# Save config.json last.
|
| 167 |
+
self.config.save_pretrained(save_path)
|
| 168 |
+
return state_dict, self.config
|
| 169 |
+
|
| 170 |
+
def load_state_dict(
|
| 171 |
+
self, state_dict: OrderedDict[str, Tensor], strict: bool = True
|
| 172 |
+
): # type: ignore[override]
|
| 173 |
+
# Interpret the state dict as a serialized Luxical Embedder and rebuild it.
|
| 174 |
+
try:
|
| 175 |
+
self._embedder = _embedder_from_state_dict(state_dict)
|
| 176 |
+
self._embedder_path = None
|
| 177 |
+
# Update config fields if available
|
| 178 |
+
self.config.embedding_dim = self._embedder.embedding_dim
|
| 179 |
+
self.config.max_ngram_length = self._embedder.max_ngram_length
|
| 180 |
+
return torch.nn.modules.module._IncompatibleKeys([], [])
|
| 181 |
+
except KeyError:
|
| 182 |
+
if strict:
|
| 183 |
+
missing = list(state_dict.keys())
|
| 184 |
+
raise NotImplementedError(
|
| 185 |
+
"LuxicalOneModel expected serialized embedder tensors; "
|
| 186 |
+
f"unexpected keys: {missing}"
|
| 187 |
+
)
|
| 188 |
+
return torch.nn.modules.module._IncompatibleKeys([], list(state_dict.keys()))
|
| 189 |
+
|
| 190 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 191 |
+
msg = "LuxicalOneModel does not expose token embeddings."
|
| 192 |
+
raise NotImplementedError(msg)
|
| 193 |
+
|
| 194 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
| 195 |
+
msg = "LuxicalOneModel does not support replacing token embeddings."
|
| 196 |
+
raise NotImplementedError(msg)
|
| 197 |
+
|
| 198 |
+
def resize_token_embeddings(self, *args, **kwargs) -> None:
|
| 199 |
+
msg = "LuxicalOneModel does not use token embeddings."
|
| 200 |
+
raise NotImplementedError(msg)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def _ensure_embedder_loaded(self) -> Embedder:
|
| 204 |
+
if self._embedder is not None:
|
| 205 |
+
return self._embedder
|
| 206 |
+
raise RuntimeError(
|
| 207 |
+
"Luxical embedder is not initialized. Load this model via "
|
| 208 |
+
"AutoModel/LuxicalOneModel.from_pretrained so weights can be "
|
| 209 |
+
"decoded into an Embedder."
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# No legacy file-based loader; all state lives in model.safetensors.
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def export_embedder_to_huggingface_directory(
|
| 216 |
+
embedder: Embedder,
|
| 217 |
+
save_directory: str | Path,
|
| 218 |
+
*,
|
| 219 |
+
config_overrides: dict[str, object] | None = None,
|
| 220 |
+
) -> Path:
|
| 221 |
+
save_path = Path(save_directory)
|
| 222 |
+
config = LuxicalOneConfig(
|
| 223 |
+
max_ngram_length=embedder.max_ngram_length,
|
| 224 |
+
embedding_dim=embedder.embedding_dim,
|
| 225 |
+
**(config_overrides or {}),
|
| 226 |
+
)
|
| 227 |
+
config.name_or_path = str(save_path.resolve())
|
| 228 |
+
model = LuxicalOneModel(config=config, embedder=embedder)
|
| 229 |
+
model.save_pretrained(save_path)
|
| 230 |
+
return save_path
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# No global Auto* registration; exports include `auto_map` in config.json.
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def _embedder_to_state_dict(embedder: Embedder) -> OrderedDict[str, Tensor]:
|
| 237 |
+
sd: "OrderedDict[str, Tensor]" = OrderedDict()
|
| 238 |
+
# Version
|
| 239 |
+
sd["embedder.version"] = torch.tensor([1], dtype=torch.long)
|
| 240 |
+
# Tokenizer json bytes
|
| 241 |
+
tok_bytes = np.frombuffer(embedder.tokenizer.to_str().encode("utf-8"), dtype=np.uint8)
|
| 242 |
+
sd["embedder.tokenizer"] = torch.from_numpy(tok_bytes.copy())
|
| 243 |
+
# Recognized ngrams
|
| 244 |
+
sd["embedder.recognized_ngrams"] = torch.from_numpy(embedder.recognized_ngrams.astype(np.int64, copy=False))
|
| 245 |
+
# Hash map keys/values
|
| 246 |
+
keys, vals = _unpack_int_dict(embedder.ngram_hash_to_ngram_idx)
|
| 247 |
+
sd["embedder.ngram_keys"] = torch.from_numpy(keys.astype(np.int64, copy=False))
|
| 248 |
+
sd["embedder.ngram_vals"] = torch.from_numpy(vals.astype(np.int64, copy=False))
|
| 249 |
+
# IDF
|
| 250 |
+
sd["embedder.idf_values"] = torch.from_numpy(embedder.idf_values.astype(np.float32, copy=False))
|
| 251 |
+
# Layers
|
| 252 |
+
layers = embedder.bow_to_dense_embedder.layers
|
| 253 |
+
sd["embedder.num_layers"] = torch.tensor([len(layers)], dtype=torch.long)
|
| 254 |
+
for i, layer in enumerate(layers):
|
| 255 |
+
sd[f"embedder.nn_layer_{i}"] = torch.from_numpy(layer.astype(np.float32, copy=False))
|
| 256 |
+
return sd
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _embedder_from_state_dict(state_dict: OrderedDict[str, Tensor]) -> Embedder:
|
| 260 |
+
version = int(state_dict["embedder.version"][0].item())
|
| 261 |
+
if version != 1:
|
| 262 |
+
raise NotImplementedError(f"Unsupported embedder version: {version}")
|
| 263 |
+
tok_bytes = bytes(state_dict["embedder.tokenizer"].cpu().numpy().astype(np.uint8).tolist())
|
| 264 |
+
tokenizer = ArrowTokenizer(tok_bytes.decode("utf-8"))
|
| 265 |
+
recognized_ngrams = state_dict["embedder.recognized_ngrams"].cpu().numpy().astype(np.int64, copy=False)
|
| 266 |
+
keys = state_dict["embedder.ngram_keys"].cpu().numpy().astype(np.int64, copy=False)
|
| 267 |
+
vals = state_dict["embedder.ngram_vals"].cpu().numpy().astype(np.int64, copy=False)
|
| 268 |
+
ngram_map = _pack_int_dict(keys, vals)
|
| 269 |
+
idf_values = state_dict["embedder.idf_values"].cpu().numpy().astype(np.float32, copy=False)
|
| 270 |
+
num_layers = int(state_dict["embedder.num_layers"][0].item())
|
| 271 |
+
layers = [
|
| 272 |
+
state_dict[f"embedder.nn_layer_{i}"].cpu().numpy().astype(np.float32, copy=False)
|
| 273 |
+
for i in range(num_layers)
|
| 274 |
+
]
|
| 275 |
+
s2d = SparseToDenseEmbedder(layers=layers)
|
| 276 |
+
return Embedder(
|
| 277 |
+
tokenizer=tokenizer,
|
| 278 |
+
recognized_ngrams=recognized_ngrams,
|
| 279 |
+
ngram_hash_to_ngram_idx=ngram_map,
|
| 280 |
+
idf_values=idf_values,
|
| 281 |
+
bow_to_dense_embedder=s2d,
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def _parse_cli_args() -> tuple[str, dict[str, object]]:
|
| 286 |
+
import argparse
|
| 287 |
+
|
| 288 |
+
parser = argparse.ArgumentParser(
|
| 289 |
+
description="Luxical One Huggingface wrapper: export and verify utilities.",
|
| 290 |
+
)
|
| 291 |
+
sub = parser.add_subparsers(dest="cmd", required=True)
|
| 292 |
+
|
| 293 |
+
p_export = sub.add_parser(
|
| 294 |
+
"export", help="Export a HF-formatted directory from a Luxical embedder .npz checkpoint"
|
| 295 |
+
)
|
| 296 |
+
p_export.add_argument(
|
| 297 |
+
"--checkpoint",
|
| 298 |
+
type=str,
|
| 299 |
+
default=str(Path("/tmp/luxical_one_rc4.npz")),
|
| 300 |
+
help="Path to Luxical embedder .npz checkpoint",
|
| 301 |
+
)
|
| 302 |
+
p_export.add_argument(
|
| 303 |
+
"--output-dir",
|
| 304 |
+
type=str,
|
| 305 |
+
default=str(Path(__file__).resolve().parent / "artifacts" / "luxical_one_hf"),
|
| 306 |
+
help="Directory to write the Huggingface-formatted model",
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
p_verify = sub.add_parser(
|
| 310 |
+
"verify", help="Verify HF-loaded model matches native Embedder outputs"
|
| 311 |
+
)
|
| 312 |
+
p_verify.add_argument(
|
| 313 |
+
"--checkpoint",
|
| 314 |
+
type=str,
|
| 315 |
+
default=str(Path("/tmp/luxical_one_rc4.npz")),
|
| 316 |
+
help="Path to Luxical embedder .npz checkpoint",
|
| 317 |
+
)
|
| 318 |
+
p_verify.add_argument(
|
| 319 |
+
"--export-dir",
|
| 320 |
+
type=str,
|
| 321 |
+
default=str(Path(__file__).resolve().parent / "artifacts" / "luxical_one_hf"),
|
| 322 |
+
help="HF directory to create/use for verification",
|
| 323 |
+
)
|
| 324 |
+
p_verify.add_argument(
|
| 325 |
+
"--batch-size", type=int, default=3, help="Batch size for verification"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
args = parser.parse_args()
|
| 329 |
+
return args.cmd, vars(args)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def _sample_texts() -> list[str]:
|
| 333 |
+
return [
|
| 334 |
+
"Luxical embeddings make tf-idf sparkle.",
|
| 335 |
+
"This sentence tests the Huggingface wrapper path.",
|
| 336 |
+
"Short.",
|
| 337 |
+
]
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def _cmd_export(checkpoint: str, output_dir: str) -> None:
|
| 341 |
+
ckpt_path = Path(checkpoint).expanduser().resolve()
|
| 342 |
+
if not ckpt_path.exists():
|
| 343 |
+
raise FileNotFoundError(
|
| 344 |
+
f"Checkpoint not found at {ckpt_path}. Download with: aws s3 cp "
|
| 345 |
+
"s3://datology-external-artifacts/luxical/luxical_one_rc4.npz "
|
| 346 |
+
"/tmp/luxical_one_rc4.npz"
|
| 347 |
+
)
|
| 348 |
+
out_dir = Path(output_dir).expanduser().resolve()
|
| 349 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 350 |
+
embedder = Embedder.load(ckpt_path)
|
| 351 |
+
export_embedder_to_huggingface_directory(embedder, out_dir)
|
| 352 |
+
print(f"Huggingface directory written to {out_dir}")
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _cmd_verify(checkpoint: str, export_dir: str, batch_size: int) -> None:
|
| 356 |
+
ckpt_path = Path(checkpoint).expanduser().resolve()
|
| 357 |
+
if not ckpt_path.exists():
|
| 358 |
+
raise FileNotFoundError(
|
| 359 |
+
f"Checkpoint not found at {ckpt_path}. Download with: aws s3 cp "
|
| 360 |
+
"s3://datology-external-artifacts/luxical/luxical_one_rc4.npz "
|
| 361 |
+
"/tmp/luxical_one_rc4.npz"
|
| 362 |
+
)
|
| 363 |
+
exp_dir = Path(export_dir).expanduser().resolve()
|
| 364 |
+
exp_dir.mkdir(parents=True, exist_ok=True)
|
| 365 |
+
|
| 366 |
+
texts = _sample_texts()
|
| 367 |
+
embedder = Embedder.load(ckpt_path)
|
| 368 |
+
ref = embedder(texts, batch_size=batch_size)
|
| 369 |
+
|
| 370 |
+
export_embedder_to_huggingface_directory(embedder, exp_dir)
|
| 371 |
+
# Load using AutoModel so this mirrors user experience, with remote code.
|
| 372 |
+
from transformers import AutoModel # local import to keep top-level light
|
| 373 |
+
model = AutoModel.from_pretrained(exp_dir, trust_remote_code=True)
|
| 374 |
+
model.eval()
|
| 375 |
+
with torch.inference_mode():
|
| 376 |
+
out = (
|
| 377 |
+
model(texts, batch_size=batch_size, progress_bars=False)
|
| 378 |
+
.embeddings.cpu()
|
| 379 |
+
.numpy()
|
| 380 |
+
)
|
| 381 |
+
import numpy as np
|
| 382 |
+
|
| 383 |
+
np.testing.assert_allclose(out, ref, rtol=1e-5, atol=1e-6)
|
| 384 |
+
print("Verification succeeded: Huggingface model matches embedder output.")
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
cmd, kv = _parse_cli_args()
|
| 389 |
+
if cmd == "export":
|
| 390 |
+
_cmd_export(checkpoint=str(kv["checkpoint"]), output_dir=str(kv["output_dir"]))
|
| 391 |
+
elif cmd == "verify":
|
| 392 |
+
_cmd_verify(
|
| 393 |
+
checkpoint=str(kv["checkpoint"]),
|
| 394 |
+
export_dir=str(kv["export_dir"]),
|
| 395 |
+
batch_size=int(kv["batch_size"]),
|
| 396 |
+
)
|
| 397 |
+
else:
|
| 398 |
+
raise SystemExit(f"Unknown command: {cmd}")
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ec24f66cba56eb308214cd5078fffa37bf3316c70ca6c3f455d4ab60d7d2a95
|
| 3 |
+
size 929754793
|