Update README.md
Browse files
README.md
CHANGED
|
@@ -135,127 +135,49 @@ For detailed training logs, metrics, and visualizations, please refer to the Wei
|
|
| 135 |
|
| 136 |
## How to Use
|
| 137 |
|
| 138 |
-
You can use this model for inference with the Hugging Face `transformers` library.
|
|
|
|
| 139 |
|
| 140 |
```python
|
| 141 |
from transformers import SpeechEncoderDecoderModel, AutoProcessor
|
| 142 |
import torch
|
| 143 |
-
import soundfile as sf
|
| 144 |
-
|
| 145 |
-
model_id = "matejhornik/wav2vec2-base_bart-base_voxpopuli-en"
|
| 146 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 147 |
-
|
| 148 |
-
# Load the processor (feature extractor and tokenizer)
|
| 149 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 150 |
-
|
| 151 |
-
# Load the model
|
| 152 |
-
model = SpeechEncoderDecoderModel.from_pretrained(model_id).to(device)
|
| 153 |
-
|
| 154 |
-
def transcribe_audio(audio_path):
|
| 155 |
-
"""Loads audio, processes it, and transcribes it."""
|
| 156 |
-
speech_array, sampling_rate = sf.read(audio_path)
|
| 157 |
-
|
| 158 |
-
# Ensure audio is 16kHz as expected by the model
|
| 159 |
-
if sampling_rate != processor.feature_extractor.sampling_rate:
|
| 160 |
-
raise ValueError(f"Audio sampling rate {sampling_rate} does not match model's required {processor.feature_extractor.sampling_rate}Hz. Please resample.")
|
| 161 |
-
|
| 162 |
-
# Preprocess the audio
|
| 163 |
-
inputs = processor(speech_array, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True)
|
| 164 |
-
input_features = inputs.input_features.to(device)
|
| 165 |
-
attention_mask = inputs.attention_mask.to(device)
|
| 166 |
-
|
| 167 |
-
# Generate transcription
|
| 168 |
-
with torch.no_grad():
|
| 169 |
-
predicted_ids = model.generate(input_features, attention_mask=attention_mask, max_length=128)
|
| 170 |
-
|
| 171 |
-
# Decode the transcription
|
| 172 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 173 |
-
return transcription[0]
|
| 174 |
-
|
| 175 |
-
# Example usage:
|
| 176 |
-
audio_file_path = "path/to/your/audio.wav"
|
| 177 |
-
try:
|
| 178 |
-
transcription = transcribe_audio(audio_file_path)
|
| 179 |
-
print(f"Transcription: {transcription}")
|
| 180 |
-
except ValueError as e:
|
| 181 |
-
print(e)
|
| 182 |
-
except FileNotFoundError:
|
| 183 |
-
print(f"Audio file not found at: {audio_file_path}. Please provide a valid path.")
|
| 184 |
-
```
|
| 185 |
-
|
| 186 |
-
## Reproducing Evaluation on VoxPopuli
|
| 187 |
-
To reproduce the evaluation results on the VoxPopuli test set:
|
| 188 |
-
|
| 189 |
-
```python
|
| 190 |
from datasets import load_dataset
|
| 191 |
-
from transformers import SpeechEncoderDecoderModel, AutoProcessor
|
| 192 |
-
import torch
|
| 193 |
-
from jiwer import wer
|
| 194 |
-
from tqdm import tqdm
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
|
| 201 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
with torch.no_grad():
|
| 228 |
-
predicted_ids = model.generate(input_features, max_length=128)
|
| 229 |
-
|
| 230 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 231 |
-
batch["prediction"] = transcription[0]
|
| 232 |
-
batch["reference"] = batch["normalized_text"]
|
| 233 |
-
return batch
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
predictions = []
|
| 237 |
-
references = []
|
| 238 |
-
|
| 239 |
-
for sample in tqdm(voxpopuli_test):
|
| 240 |
-
try:
|
| 241 |
-
processed_sample = map_to_pred(sample)
|
| 242 |
-
predictions.append(processed_sample["prediction"])
|
| 243 |
-
references.append(processed_sample["reference"])
|
| 244 |
-
except Exception as e:
|
| 245 |
-
print(f"Error processing sample: {e}")
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# Calculate WER
|
| 249 |
-
if predictions and references:
|
| 250 |
-
current_wer = wer(references, predictions)
|
| 251 |
-
print(f"WER on {split} set: {current_wer:.4f}")
|
| 252 |
-
else:
|
| 253 |
-
print("No samples processed or an error occurred.")
|
| 254 |
-
|
| 255 |
-
# Expected WER on test set: 0.0885
|
| 256 |
-
# Expected WER on validation set: 0.0855
|
| 257 |
```
|
| 258 |
|
|
|
|
|
|
|
| 259 |
### Framework Versions
|
| 260 |
|
| 261 |
This model was trained using:
|
|
@@ -268,6 +190,8 @@ This model was trained using:
|
|
| 268 |
- Evaluate: `^0.4.3`
|
| 269 |
- WandB: `^0.19.7`
|
| 270 |
|
|
|
|
|
|
|
| 271 |
## Citation
|
| 272 |
Citation
|
| 273 |
If you use this model or findings from the thesis, please cite:
|
|
@@ -295,4 +219,6 @@ If you use this model or findings from the thesis, please cite:
|
|
| 295 |
For questions, feedback, or collaboration opportunities related to this thesis or any other stuff, feel free to reach out:
|
| 296 |
|
| 297 |
- **Email:** [email protected] / [email protected]
|
| 298 |
-
- **GitHub:** [hornikmatej](https://github.com/hornikmatej)
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
## How to Use
|
| 137 |
|
| 138 |
+
You can use this model for inference with the Hugging Face `transformers` library.
|
| 139 |
+
[](https://colab.research.google.com/github/hornikmatej/thesis_mit/blob/main/graphs/colab_ntb.ipynb)
|
| 140 |
|
| 141 |
```python
|
| 142 |
from transformers import SpeechEncoderDecoderModel, AutoProcessor
|
| 143 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
MODEL_ID = "matejhornik/wav2vec2-base_bart-base_voxpopuli-en"
|
| 147 |
+
DATASET_ID = "facebook/voxpopuli"
|
| 148 |
+
DATASET_CONFIG = "en"
|
| 149 |
+
DATASET_SPLIT = "test" # "validation"
|
| 150 |
|
| 151 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 152 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 153 |
+
model = SpeechEncoderDecoderModel.from_pretrained(MODEL_ID).to(device)
|
| 154 |
+
|
| 155 |
+
print(f"Using device: {device}\nStreaming one sample from '{DATASET_ID}'"
|
| 156 |
+
"(config: '{DATASET_CONFIG}', split: '{DATASET_SPLIT}')...")
|
| 157 |
+
streamed_dataset = load_dataset(
|
| 158 |
+
DATASET_ID,
|
| 159 |
+
DATASET_CONFIG,
|
| 160 |
+
split=DATASET_SPLIT,
|
| 161 |
+
streaming=True,
|
| 162 |
+
)
|
| 163 |
+
sample = next(iter(streamed_dataset))
|
| 164 |
+
|
| 165 |
+
audio_input = sample["audio"]["array"]
|
| 166 |
+
input_sampling_rate = sample["audio"]["sampling_rate"]
|
| 167 |
+
|
| 168 |
+
inputs = processor(audio_input, sampling_rate=input_sampling_rate, return_tensors="pt", padding=True)
|
| 169 |
+
input_features = inputs.input_values.to(device)
|
| 170 |
+
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
predicted_ids = model.generate(input_features, max_length=128)
|
| 173 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 174 |
+
|
| 175 |
+
print(f"\nOriginal: {sample['normalized_text']}")
|
| 176 |
+
print(f"Transcribed: {transcription}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
```
|
| 178 |
|
| 179 |
+
|
| 180 |
+
|
| 181 |
### Framework Versions
|
| 182 |
|
| 183 |
This model was trained using:
|
|
|
|
| 190 |
- Evaluate: `^0.4.3`
|
| 191 |
- WandB: `^0.19.7`
|
| 192 |
|
| 193 |
+
Visit the [pyproject.toml](https://github.com/hornikmatej/thesis_mit/blob/main/pyproject.toml) file for a complete list of dependencies.
|
| 194 |
+
|
| 195 |
## Citation
|
| 196 |
Citation
|
| 197 |
If you use this model or findings from the thesis, please cite:
|
|
|
|
| 219 |
For questions, feedback, or collaboration opportunities related to this thesis or any other stuff, feel free to reach out:
|
| 220 |
|
| 221 |
- **Email:** [email protected] / [email protected]
|
| 222 |
+
- **GitHub:** [hornikmatej](https://github.com/hornikmatej)
|
| 223 |
+
|
| 224 |
+
|