Mermaid Diagram Generator - Qwen2.5-Coder-7B
This model generates valid Mermaid diagram code from natural language descriptions.
Model Details
- Base Model: Qwen2.5-Coder-7B
- Fine-tuned on: Custom Mermaid diagram dataset
- Training Time: ~30 minutes
- Training Cost: ~$0.25
- Final Loss: 0.2934
- Framework: Unsloth + LoRA
Supported Diagram Types
- β Flowcharts
- β Sequence Diagrams
- β Class Diagrams
- β State Diagrams
- β ER Diagrams
Usage
from unsloth import FastLanguageModel
# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
"Azandra98/mermaid-diagram-generator-qwen2.5-7b",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model)
# Generate diagram
def generate_mermaid(instruction):
prompt = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}. Generate only valid Mermaid code.
### Response:
"""
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=280,
temperature=0.45,
top_p=0.9,
repetition_penalty=1.15,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example
diagram = generate_mermaid("flowchart for user login process")
print(diagram)
Example Outputs
Flowchart
Prompt: "simple flowchart showing user login process"
graph TD
A[Start] --> B[Enter Username]
B --> C[Enter Password]
C --> D[Try to Login]
D -->|Success| E[Redirect Home Page]
D -->|Failure| F[Show Error Message]
F --> G[End]
Sequence Diagram
Prompt: "sequence diagram for placing an online order"
sequenceDiagram
participant Customer
participant Website
participant Payment Gateway
Customer ->> Website: Browse Products
Website -->> Customer: Product Details
Customer ->> Website: Add to Cart
Customer ->> Website: Proceed to Checkout
Website ->> Payment Gateway: Process Payment
Payment Gateway -->> Website: Payment Confirmation
Website -->> Customer: Order Placed Successfully
Training Details
- Method: LoRA (Low-Rank Adaptation)
- Rank: 16
- Alpha: 16
- Epochs: 3
- Batch Size: 2
- Learning Rate: 2e-4
- Optimizer: AdamW (8-bit)
Limitations
- Best for simple to medium complexity diagrams
- May require post-processing for very complex diagrams
- Output should be validated at mermaid.live
License
Apache 2.0
Citation
@misc{mermaid-generator-qwen-2024,
author = {Azandra98},
title = {Mermaid Diagram Generator based on Qwen2.5-Coder-7B},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/Azandra98/mermaid-diagram-generator-qwen2.5-7b}}
}