from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learn = load_learner("model.pkl") im = PILImage.create('dog.jpg') im.thumbnail((192,192)) im learn.predict(im) categories = ("dog","cat") def classify_image(img): pred,idx,probs=learn.predict(img) return dict(zip(categories,map(float,probs))) classify_image(im) image = gr.inputs.Image(shape=(192,192)) label= gr.outputs.Label() examples = ['dog.jpg','cat.jpg','example.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = examples) intf.launch(inline=False)