---
license: apache-2.0
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
language:
- es
tags:
- BEL
- retrieval
- entity-retrieval
- named-entity-disambiguation
- entity-disambiguation
- named-entity-linking
- entity-linking
- text2text-generation
- biomedical
- healthcare
- synthetic-data
- causal-lm
- llm
library_name: transformers
finetuning_task:
- text2text-generation
- entity-linking
---
# SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
## SynCABEL
**SynCABEL** is a novel framework that addresses data scarcity in biomedical entity linking through **synthetic data generation**. The method, introduced in our [paper]
## SynCABEL (SPACCC Edition)
This is a **finetuned version of LLaMA-3-8B** trained on **SPACCC** using **[SynthSPACCC](https://huggingface.co/datasets/AnonymousARR42/SynCABEL)** (our synthetic dataset generated via the SynCABEL framework).
| | |
|--------|---------|
| **Base Model** | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
| **Training Data** | SPACCC (real) + [SynthSPACCC](https://huggingface.co/datasets/AnonymousARR42/SynCABEL) (synthetic) |
| **Fine-tuning** | [Supervised Fine-Tuning](https://huggingface.co/docs/trl/en/sft_trainer) |
## Training Data Composition
The model is trained on a mix of **human-annotated** and **synthetic** data:
```
SPACCC (human) : 27,799 examples
SynthSPACCC (synthetic) : 1,813,463 examples
```
To ensure balanced learning, **human data is upsampled during training** so that each batch contains:
```
50% human-annotated data
50% synthetic data
```
In other words, although SynthMM is larger, the model always sees a **1:1 ratio of human to synthetic examples**, preventing synthetic data from overwhelming human supervision.
## Usage
### Loading
```python
import torch
from transformers import AutoModelForCausalLM
# Load the model (requires trust_remote_code for custom architecture)
model = AutoModelForCausalLM.from_pretrained(
"AnonymousARR42/SynCABEL_SPACCC",
trust_remote_code=True,
device_map="auto"
)
```
### Unconstrained Generation
```python
# Let the model freely generate concept names
sentences = [
"El paciente con [embolia pulmonar masiva]{ENFERMEDAD} presentó signos de dificultad respiratoria.",
"El paciente se sometió a una [angioplastia coronaria]{PROCEDIMIENTO} para restaurar el flujo sanguíneo."
]
results = model.sample(
sentences=sentences,
constrained=False,
num_beams=2,
)
for i, beam_results in enumerate(results):
print(f"Input: {sentences[i]}")
mention = beam_results[0]["mention"]
print(f"Mention: {mention}")
for j, result in enumerate(beam_results):
print(
f"Beam {j+1}:\n"
f"Predicted concept name:{result['pred_concept_name']}\n"
f"Predicted code: {result['pred_concept_code']}\n"
f"Beam score: {result['beam_score']:.3f}\n"
)
```
**Output:**
```
Input: El paciente con [embolia pulmonar masiva]{ENFERMEDAD} presentó signos de dificultad respiratoria.
Mention: embolia pulmonar masiva
Beam 1:
Predicted concept name:tromboembolia pulmonar masiva aguda
Predicted code: NO_CODE
Beam score: 0.818
Beam 2:
Predicted concept name:tromboembolia masiva
Predicted code: 58417008
Beam score: 0.816
Input: El paciente se sometió a una [angioplastia coronaria]{PROCEDIMIENTO} para restaurar el flujo sanguíneo.
Mention: angioplastia coronaria
Beam 1:
Predicted concept name:operaciones transluminales en arteria coronaria
Predicted code: NO_CODE
Beam score: 0.764
Beam 2:
Predicted concept name:procedimiento en arteria coronaria
Predicted code: NO_CODE
Beam score: 0.728
```
### Constrained Decoding (Recommended for Entity Linking)
```python
# Constrained to valid biomedical concepts
sentences = [
"El paciente con [embolia pulmonar masiva]{ENFERMEDAD} presentó signos de dificultad respiratoria.",
"El paciente se sometió a una [angioplastia coronaria]{PROCEDIMIENTO} para restaurar el flujo sanguíneo."
]
results = model.sample(
sentences=sentences,
constrained=True,
num_beams=2,
)
for i, beam_results in enumerate(results):
print(f"Input: {sentences[i]}")
mention = beam_results[0]["mention"]
print(f"Mention: {mention}")
for j, result in enumerate(beam_results):
print(
f"Beam {j+1}:\n"
f"Predicted concept name:{result['pred_concept_name']}\n"
f"Predicted code: {result['pred_concept_code']}\n"
f"Beam score: {result['beam_score']:.3f}\n"
)
```
**Output:**
```
Input: El paciente con [embolia pulmonar masiva]{ENFERMEDAD} presentó signos de dificultad respiratoria.
Mention: embolia pulmonar masiva
Beam 1:
Predicted concept name:tromboembolia masiva
Predicted code: 58417008
Beam score: 0.816
Beam 2:
Predicted concept name:tromboembolia pulmonar aguda
Predicted code: 707414004
Beam score: 0.763
Input: El paciente se sometió a una [angioplastia coronaria]{PROCEDIMIENTO} para restaurar el flujo sanguíneo.
Mention: angioplastia coronaria
Beam 1:
Predicted concept name:operaciones transluminales en arteria pulmonar
Predicted code: 175266007
Beam score: 0.238
Beam 2:
Predicted concept name:operaciones transluminales en la arteria femoral o poplítea
Predicted code: 265530008
Beam score: 0.182
```
## Scores
Entity linking performance (Recall@1) on biomedical benchmarks. The best results are shown in **bold**, the second-best results are underlined, and the "Average" column reports the mean score across the four benchmarks.
| Model | MM-ST21PV
(english) | QUAERO-MEDLINE
(french) | QUAERO-EMEA
(french) | SPACCC
(spanish) | Avg. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SciSpacy | 53.8 | 40.5 | 37.1 | 13.2 | 36.2 |
| SapBERT | 51.1 | 50.6 | 49.8 | 33.9 | 46.4 |
| CODER-all | 56.6 | 58.7 | 58.1 | 43.7 | 54.3 |
| SapBERT-all | 64.6 | 74.7 | 67.9 | 47.9 | 63.8 |
| ArboEL | 74.5 | 70.9 | 62.8 | 49.0 | 64.2 |
| mBART-large | 65.5 | 61.5 | 58.6 | 57.7 | 60.8 |
| + Guided inference | 70.0 | 72.8 | 71.1 | 61.8 | 68.9 |
| **+ SynCABEL (Our method)** | 71.5 | 77.1 | 75.3 | 64.0 | 72.0 |
| Llama-3-8B | 69.0 | 66.4 | 65.5 | 59.9 | 65.2 |
| + Guided inference | 74.4 | 77.5 | 72.9 | 64.2 | 72.3 |
| **+ SynCABEL (Our method)** | **75.4** | **79.7** | **79.0** | **67.0** | **75.3** |
Here, we provide the source repositories for the baselines:
- [**SciSpacy**](https://github.com/allenai/scispacy)
- [**SapBERT**](https://hf.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext)
- [**SapBERT-all**](https://hf.co/cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR)
- [**CODER-all**](https://hf.co/GanjinZero/coder_all)
- [**ArboEL**](https://github.com/dhdhagar/arboEL)
- [**mBART-large**](https://hf.co/facebook/mbart-large-50)
- [**LLaMA-3-8B**](https://hf.co/meta-llama/Meta-Llama-3-8B-Instruct).
### Speed and Memory
| Model | Model (GB) | Cand. (GB) | Speed (/s) |
|--------------|------------|------------|------------|
| SapBERT | 2.1 | 20.1 | **575.5** |
| ArboEL | **1.2** | 7.1 | 38.9 |
| mBART | 2.3 | **5.4** | 51.0 |
| Llama-3-8B | 28.6 | **5.4** | 19.1 |
*Measured on single H100 GPU, constrained decoding*