--- library_name: transformers pipeline_tag: text-classification tags: - text-classification - voicemail-detection - bert - pytorch license: apache-2.0 --- # Voicemail Detection Model (3-Utterance) Binary classification model to detect voicemail vs human on phone calls. ## Performance ### Validation Set - Accuracy: 0.9703 - Precision: 0.9005 - Recall: 0.9794 - F1: 0.9383 ### Test Set - Accuracy: 0.8353 - Precision: 0.6678 - Recall: 0.9895 - F1: 0.7975 ## Details Base: prajjwal1/bert-tiny Threshold: 0.1153 Training: 2025-10-04 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_id = "Adya662/bert-tiny-amd" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) model.eval() text = "Hi you've reached voicemail" encoding = tokenizer( text, return_tensors='pt', max_length=128, padding='max_length', truncation=True ) with torch.no_grad(): outputs = model(**encoding) # Assuming label 1 = voicemail (update if different) probs = torch.softmax(outputs.logits, dim=-1) probability = probs[0, 1].item() optimal_threshold = 0.1153 prediction = "voicemail" if probability >= optimal_threshold else "human" print({"probability": probability, "prediction": prediction}) ```